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abstract Cancer genotyping has identified a large number of putative tumor suppressor 
genes. Carcinogenesis is a multistep process, but the importance and specific roles 

of many of these genes during tumor initiation, growth, and progression remain unknown. Here we use 
a multiplexed mouse model of oncogenic KRAS–driven lung cancer to quantify the impact of 48 known 
and putative tumor suppressor genes on diverse aspects of carcinogenesis at an unprecedented scale 
and resolution. We uncover many previously understudied functional tumor suppressors that constrain 
cancer in vivo. Inactivation of some genes substantially increased growth, whereas the inactivation of 
others increases tumor initiation and/or the emergence of exceptionally large tumors. These functional 
in vivo analyses revealed an unexpectedly complex landscape of tumor suppression that has implica-
tions for understanding cancer evolution, interpreting clinical cancer genome sequencing data, and 
directing approaches to limit tumor initiation and progression.

Significance: Our high-throughput and high-resolution analysis of tumor suppression uncovered 
novel genetic determinants of oncogenic KRAS–driven lung cancer initiation, overall growth, and excep-
tional growth. This taxonomy is consistent with changing constraints during the life history of cancer 
and highlights the value of quantitative in vivo genetic analyses in autochthonous cancer models.
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INTRODUCTION
Cancer initiation and development is a multistep process 

driven in large part by cancer cell–intrinsic alterations (1). 
Over the past several decades, cancer genome sequencing 
has contributed to our understanding of the genetic drivers 
of cancer and identified a large number of putative tumor 
suppressor genes (2–8). However, genome–sequencing data 
are insufficient to determine the importance of these genes 
during various stages of carcinogenesis (9). The nature and 
frequency of genomic alterations also provide limited insight 
into the modes of action of putative tumor suppressor genes, 
underscoring the importance of functional genomics in elu-
cidating gene function (10, 11).

Tumor suppressors regulate many different pathways and 
cellular processes. Assessing their impact on tumor initiation 

and each step of cancer development not only distinguishes 
driver from passenger genes but also highlights different 
pathways and processes that constrain carcinogenesis across 
the course of the disease (12, 13). Thus, in vivo functional 
genomic approaches are critical for understanding can-
cer evolution (14–16), interpreting clinical cancer genome 
sequencing data (17, 18), and directing precision medicine 
approaches (19, 20).

In vivo cancer models in which tumor initiation and growth 
occur entirely within the autochthonous environment are 
uniquely tractable systems to uncover gene function (21). 
The integration of CRISPR/Cas9 somatic genome editing 
into genetically engineered mouse models of human cancer 
has facilitated the rapid analysis of gene function in vivo 
(22–25). Recently, the combination of somatic CRISPR-based 
genome editing with tumor barcoding and high-throughput 
barcode sequencing (Tuba-seq) has greatly increased the scale 
and precision of these in vivo approaches (26, 27). These types 
of approaches can quantify the impact of many engineered 
genomic alterations on cancer growth in vivo in a multiplexed 
manner (12, 26–28).

Here we integrate multiple critical advances in our Tuba-
seq pipeline and quantify the roles of a broad range of diverse 
putative tumor suppressors across multiple facets of carcino-
genesis. By uncovering the extent to which different tumor 
suppressors govern tumor initiation, growth, and acquisition 
of altered phenotypes across time, we uncover an unexpect-
edly complex taxonomy of tumor suppression across the life 
history of oncogenic KRAS–driven lung cancer.

RESULTS
Prioritization of Candidate Tumor  
Suppressor Genes

To characterize the functional landscape of tumor suppres-
sion, we selected 48 known and putative tumor suppressor 
genes to investigate using Tuba-seq in a model of oncogenic 
KRAS–driven lung cancer (Fig. 1A; Methods). These genes  
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were chosen based on multiple criteria, including their muta-
tional frequency in lung adenocarcinoma from The Cancer 
Genome Atlas (TCGA), GENIE, and TRACERx data sets; 
their mutational frequency in pan-cancer genomic data; and 
the consistency of their mutational profiles with tumor sup-
pressor activity (Fig. 1A and B; Supplementary Fig. S1A–S1E; 
Supplementary Table S1; refs. 2, 4–7). We also considered 
their putative tumor-suppressive function in other cancer 

types as well as their molecular functions (Supplementary 
Fig. S2A and S2B; refs. 8, 29, 30). Our candidate genes vary 
greatly in their mutation frequency and co-occurrence with 
oncogenic KRAS alterations (Supplementary Fig. S1C–S1E). 
Importantly, these genes include well-studied tumor sup-
pressors as well as genes for which there is very limited 
evidence supporting a role in constraining any aspect of 
carcinogenesis (Supplementary Fig. S3A and S3B).

Figure 1.  An in vivo screen for tumor suppressor genes in autochthonous oncogenic KRAS–driven lung tumors. A, Candidate tumor suppressor genes were 
chosen based on multiple criteria, including their frequency and known/predicted biological functions. The plot shows the mutation frequencies of these 48 
genes across pan-cancer and in lung adenocarcinoma (data from TCGA). Color denotes lung adenocarcinoma driver consensus score derived from multiple 
prediction tools. Several genes that are mutated at high frequency in lung adenocarcinoma or pan-cancer are labeled. B, Features of the mutations in each 
gene are consistent with tumor suppressor function. Green’s contagion is a measure of mutational hotspots, which characterize oncogenes. Larger values 
indicate that mutations are enriched in particular residues of the protein. This measure of overdispersion is normalized to not scale with sample size and 
to be zero when mutations are randomly scattered across the transcript. Average fraction of protein lost by mutation combines the nonsense/frameshift 
mutation rate and location of the mutations in each gene [(percent of protein transcript altering mutations that are nonsense or frameshift) * (Average 
fraction of protein lost by nonsense or frameshift mutations)]. C, Schematic of tumor initiation with our pool of 102 barcoded Lenti-sgRNA/Cre vectors 
(Lenti-sgTS102/Cre). Each gene is targeted with two sgRNAs, except Trp53, which is targeted by three sgRNAs. Five inert sgRNAs are either nontargeting 
(NT) or have an active targeting but inert sgRNAs (which target NeoR in the R26LSL-Tomato allele). Barcoded lentiviral vectors contain an sgRNA, Cre, and a two-
component barcode that includes an sgRNA identifier (sgID) and random barcode (BC). This allows inactivation of multiple target genes in parallel followed 
by quantification of the number of neoplastic cells by high-throughput sgID-BC sequencing. Mouse genotype, mouse number, and titer of lentiviral vectors 
are indicated. Tuba-seq was performed on each tumor-bearing lung 15 weeks after initiation, followed by analyses to quantify the indicated metrics. ifu, 
infectious units. D, Fluorescence images of lungs from representative mice at 15 weeks after tumor initiation. Lung lobes are outlined with a dashed white 
line. Scale bars, 2 mm. E, Pearson correlation coefficient (r) and P value (two-tailed) suggest strong correlation between neoplastic cell number (an indicator 
of tumor burden) and lung weight. Each dot represents a mouse. When taking into account that tumors were initiated in KT;H11LSL-Cas9 mice with 3-fold less 
Lenti-sgTS102/Cre vectors, the total neoplastic cell number is ∼10-fold greater in KT;H11LSL-Cas9 mice than in KT mice. F, Volcano plot of the impact of inacti-
vating each putative tumor suppressor gene on relative tumor burden. Each dot represents an sgRNA. Inert sgRNAs are in gray. Tumor suppressor genes are 
colored pink when both sgRNAs induce a moderate but significant increase and green when one sgRNA induces a >4-fold increase and the other induces a 
moderate but significant increase. Data are aggregated from 47 KT;H11LSL-Cas9 and 12 KT mice.
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Quantitative Analysis Uncovers Diverse Tumor 
Suppressors with Distinct Abilities to Constrain 
Tumor Growth In Vivo

To determine the impact of inactivating each candidate 
tumor suppressor gene on carcinogenesis in vivo, we used 
Tuba-seq to quantify the tumor size profiles after inactiva-
tion of each gene (Supplementary Fig. S4A). We generated 
at least two Lenti-single-guide RNA (sgRNA)/Cre vectors 
with distinct sgRNAs targeting each gene and five Lenti-
sgInert/Cre negative control vectors (102 total vectors; Fig. 
1C; Supplementary Table S2). Each vector contains a two-
component sgID-BC, where the sgID uniquely identifies 
the sgRNA and the diverse random 20-nucleotide barcode 
(BC) uniquely labels each clonal tumor. We generated each 
lentiviral vector separately and pooled them to generate 
a highly multiplexed vector pool (Lenti-sgTS102/Cre; Fig. 
1C; Methods). We initiated lung tumors with this pool in 
KrasLSL-G12D/+;R26LSL-Tom;H11LSL-Cas9 (KT;H11LSL-Cas9) mice and 
Cas9-negative control KrasLSL-G12D/+;R26LSL-Tom (KT) mice. 
These Cas9-negative mice are necessary to confirm that all 
vectors have little impact on tumor growth in the absence 
of Cas9 and to calculate genotype-specific effects on tumor 
number (see below). Fifteen weeks after tumor initiation, 
KT;H11LSL-Cas9 mice had visibly larger tumors than KT mice 
(Fig. 1D). We extracted DNA from bulk tumor–bearing lungs 
and used Tuba-seq to quantify overall tumor burden and the 
sizes of each tumor, of each genotype, in each mouse.

KT;H11LSL-Cas9 mice had ∼10-fold higher total neoplastic 
cell number and proportionally increased lung weight (Fig. 
1E). Initial analysis of the impact of each sgRNA on tumor 
burden (a metric of the relative number of neoplastic cells 
in all tumors of the same sgRNA) highlighted many genes 
as functional tumor suppressors. Even this relatively crude 
metric, which does not incorporate the per-tumor resolu-
tion of Tuba-seq, uncovered genes in which both sgRNAs  
increased tumor burden (Fig. 1F). To investigate which 
aspects of carcinogenesis are regulated by putative tumor 
suppressor genes, we calculated multiple summary statis-
tics. We applied our experimental design to identify tumor 
suppressor genes that normally limit overall tumor growth, 
tumor initiation, and the emergence of exceptionally large 
tumors (Fig. 1C; Supplementary Fig. S4B and S4C; Methods).

Many Diverse Tumor Suppressor Genes Increased 
Overall Tumor Growth

The ability of Tuba-seq to quantify the number of neoplas-
tic cells in thousands of tumors of each genotype allowed us to 
precisely assess their impact on tumor growth with greater pre-
cision than previous approaches. We calculated two metrics of 
tumor growth from the distribution of tumor sizes to uncover 
the effect of inactivating each tumor suppressor on overall 
tumor growth (tumor sizes at defined percentiles within the 
tumor size distribution and log-normal mean; Methods; Sup-
plementary Fig. S4B). As expected, tumors initiated with each 
Lenti-sgRNA/Cre vector in control Cas9-negative KT mice had 
very similar tumor size profiles, suggesting that our pipeline 
is free from bias and false-positive signals (Supplementary 
Fig. S5A). Consistent with previous Cre/lox and CRISPR/
Cas9-based mouse models (22, 26, 31–34), inactivation of 

Stk11/Lkb1, Pten, Setd2, and Nf1 in tumors in KT;H11LSL-Cas9 
mice greatly increased tumor growth (Fig. 2A–C; Supplemen-
tary Fig. S5B). Importantly, inactivation of STAG2, a cohesin 
complex component, increased tumor growth to a comparable 
extent as inactivation of those well-established tumor sup-
pressors (Fig. 2A–C; Supplementary Fig. S5B).

Inactivation of 14 other genes, including Cdkn2c, Cmtr2, Rb1, 
Rnf43, Tsc1, and Rbm10, significantly increased tumor growth 
(Fig. 2A–C; Supplementary Fig. S5). These 14 genes include 
not only well-established tumor suppressors, such as Rb1 and 
Cdkn2a, but also many genes that have not been previously con-
sidered functional tumor suppressors in lung adenocarcinoma or 
cancer in general. For example, the effects of inactivating Cmtr2 
and Rnf43 were particularly dramatic and unexpected (Fig. 2B). 
CMTR2 is the sole cap2 2′-O-ribose methylase that modifies the 
5′-cap of mRNAs and small nuclear RNAs and is mutated in 
∼2.2% of lung adenocarcinomas and 1.4% of all cancers (7, 35) 
(Supplementary Table S1). No previous studies have investigated 
its function in cancer, and no commercial or academic cancer 
gene sequencing panels include CMTR2 (Supplementary Fig. S3A 
and S3B). RNF43 is a transmembrane E3 ubiquitin ligase that 
targets WNT receptors for lysosomal degradation (36). RNF43 
is frequently mutated across multiple cancer types, including 
in colorectal and pancreatic adenocarcinoma, in which RNF43 
deficiency has been shown to sensitize cancer cells to porcupine 
inhibitors (37, 38). Thus, our broad survey pinpointed multiple 
novel functional tumor suppressors in oncogenic KRAS–driven 
lung cancer and revealed commonality among cancer subtypes.

STAG2 Is a Functional Lung Tumor Suppressor
From our initial analysis of overall tumor growth suppres-

sion, STAG2 emerged as a particularly interesting and novel 
suppressor of lung tumor growth. STAG2 is mutated in ∼4% 
of lung adenocarcinomas, and cohesin complex components 
are altered in ∼10% of lung adenocarcinomas (Supplementary 
Fig. S6A and S6B; Supplementary Table S1). STAG2 has been 
implicated as a tumor suppressor in bladder cancer, regu-
lates lineage-specific genes in acute myeloid leukemia, and 
is mutated across diverse cancer types (39–42). However, no 
previous studies have suggested STAG2 as a critical suppres-
sor of lung cancer growth. To further investigate the tumor-
suppressive effect of STAG2, we initiated lung tumors in KT 
and KT;H11LSL-Cas9 mice with individual Lenti-sgInert/Cre and 
Lenti-sgStag2/Cre vectors (Supplementary Fig. S7A). Relative 
to control cohorts, Stag2 inactivation dramatically increased 
tumor burden (Supplementary Fig. S7B–S7E). Inactivation of 
Stag2 in lung tumors in KT;H11LSL-Cas9 mice also significantly 
reduced survival, consistent with its tumor growth–suppressive  
function (Supplementary Fig. S7F).

To further characterize STAG2-mediated lung tumor 
growth suppression, we assessed tumor growth in KT mice 
with Cre/lox-mediated inactivation of Stag2 (Fig. 3A). Stag2 is 
located on the X chromosome; thus, both heterozygous and 
homozygous Stag2 deletion in female mice and hemizygous 
Stag2 deletion in male mice generated tumors that lacked 
STAG2 protein (Fig. 3B and C). Stag2 inactivation dramatically 
increased lung tumor burden, and mice with Stag2-deficient 
tumors had markedly shorter overall survival (Fig. 3D–G). Stag2-
deficient and Stag2-proficient lung tumors were atypical adeno-
matous hyperplasias, adenomas, and early adenocarcinomas  
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that were uniformly NKX2-1/TTF1-positive. Interestingly, 
some Stag2-deficient tumors had nuclear palisading and 
were histologically distinct from the tumors that developed 
in control KT mice (Supplementary Fig. S7G–S7I). STAG2 
inactivation in other cancer and cell types is associated with 
chromosomal instability (43, 44), increased DNA damage 
(45, 46), and activation of MEK/ERK or cGAS/STING sig
naling (47, 48). However, immunohistochemistry and analy-
sis of canonical target genes suggest that these mechanisms 
are unlikely to be major drivers of the increased growth in 
Stag2-deficient lung cancer (Supplementary Fig. S8A–S8E). 

Thus, further work will be necessary to determine the 
molecular mechanisms of tumor suppression mediated by 
STAG2.

Finally, to further characterize the expression of STAG2 
in lung cancer, we performed immunohistochemistry for 
STAG2 on 479 human lung adenocarcinomas. About 20% of 
tumors were low or negative for STAG2 protein, suggesting 
that an even larger fraction of lung adenocarcinomas may be 
driven by alterations in this pathway (Fig. 3H). Interestingly, 
STAG2-low/negative lung adenocarcinomas were often more 
poorly differentiated and advanced (Fig. 3I).
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Figure 3.  Stag2, inactivation of which increases tumor burden and reduces survival, is frequently low-expressed in human lung adenocarcinoma. 
A, Cre/lox-mediated Stag2 inactivation promotes KRASG12D-driven lung tumor growth. Lung tumors were initiated in the indicated genotypes of mice 
with Lenti-Cre and allowed to grow for 15 weeks. B, Representative fluorescence images of lung lobes from the indicated genotypes and genders of mice 
are shown. Scale bars, 5 mm. C, Lenti-Cre initiated tumors in KT;Stag2flox/flox mice lack STAG2 protein. Scale bar, 50 μm. D, Lung weight from indicated 
genotypes of mice 15 weeks after tumor initiation with Lenti-Cre. Each dot represents a mouse and the bar is the mean. P values were calculated by  
Student t test. E, Inactivation of Stag2 increases lung tumor growth in vivo. Representative histology is shown. Genotype and gender are indicated.  
Scale bars, 1 mm. F, Quantification of tumor area (%) (tumor area/total lung area × 100) on hematoxylin and eosin–stained sections of mouse lungs 
15 weeks after tumor initiation. Each dot represents a mouse and the bar is the mean. P values were calculated by Student t test. G, Survival curve of 
mice with KRASG12D-driven lung tumors that are Stag2 wild-type (KT;Stag2wt/wt female and KT;Stag2wt/y male mice), Stag2 heterozygous (KT;Stag2flox/wt),  
or Stag2 deficient (KT;Stag2flox/flox female and KT;Stag2flox/y male mice). Mouse number, P value, and median survival (in days) are indicated. P values 
were calculated by comparing each cohort to the Stag2 wild-type cohort (Mantel–Haenszel test). H, Representative STAG2 IHC on human lung adeno-
carcinomas expressing high (positive) or low (low and negative) STAG2 protein. Scale bars, 100 μm. I, Quantification of STAG2 expression in 479 human 
lung adenocarcinomas. Data are grouped by tumor grade (left, with lower grade indicating well-differentiated tumors and higher grade indicating poorly 
differentiated tumors) or by tumor stage (right, classified by TNM staging system). A higher percentage of Stag2low/neg tumors are poorly differentiated 
(left) and more advanced (right) tumors.
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Figure 4.  Exaggeration of tumor phenotypes and emergence of more functional tumor suppressors over time. A, Schematic of tumor initiation with 
a pool of 85 barcoded Lenti-sgRNA/Cre vectors (Lenti-sgTS85/Cre) that exclude vectors targeting eight tumor suppressor genes (in gray and crossed 
out) from the Lenti-sgTS102/Cre pool that collectively account for ∼60% of total tumor burden. Each gene is targeted with two sgRNAs. Mouse geno-
type, mouse number, and titer of lentiviral vectors delivered to each mouse are indicated. Tuba-seq was performed on each tumor-bearing lung at the 
indicated time after tumor initiation. B, Volcano plot of the impact of inactivating each putative tumor suppressor gene on relative tumor burden. Each 
dot represents an sgRNA. Genes for which both sgRNA increase tumor burden are colored. C and D, The impact of inactivating each gene on the size of 
the 95th percentile tumor (C) and log-normal mean (D) at 15 weeks (Lenti-sgTS102/Cre 15 weeks) and 26 weeks (Lenti-sgTS85/Cre 26 weeks) after 
tumor initiation is shown. Each dot represents an sgRNA. Statistics are calculated from aggregating all tumors from 40 KT;H11LSL-Cas9 (26 weeks) and 47 
KT;H11LSL-Cas9 (15 weeks) mice. E, Heat map of the tumor-suppressive effects of six genes that emerge as suppressors of tumor growth at the later time 
point. Colors indicate the impact of inactivating each gene on tumor size at 15 weeks (Lenti-sgTS102/Cre 15 weeks and Lenti-sgTS85/Cre 15 weeks) and 
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cated percentiles for each Lenti-sgRNA/Cre vector relative to that of sgInert tumors in KT;H11LSL-Cas9 mice. Error bars indicate 95% confidence intervals. 
Percentiles that are significantly different from the average of sgInerts are in color. Data for all genes are shown in Supplementary Fig. S9B.

Additional Tumor-Suppressive Effects Emerge at 
Later Time Points

To gain further insights into the dynamics of tumor sup-
pression in lung cancer, we assessed tumor suppressor gene 
function at a later time point after tumor initiation. We 
reasoned that allowing tumors to grow for a longer period 
of time might uncover greater magnitudes of growth sup-
pression for genes that initially had modest effects and 
could highlight additional tumor suppressors that play more 
important roles only at later stages of tumor growth. To allow 
mice to survive for a longer period of time after tumor initia-

tion, we generated a second pool of Lenti-sgRNA/Cre vectors, 
which excluded those targeting Lkb1, Pten, Setd2, Nf1, Trp53, 
Stag2, Cdkn2c, and Rb1 that collectively accounted for more 
than half of the total tumor burden (Lenti-sgTS85/Cre; Fig. 
4A). We initiated tumors in KT;H11LSL-Cas9 mice with a titer 
of Lenti-sgTS85/Cre that would allow them to survive for 26 
weeks while maximizing tumor number to achieve reasonable 
statistical power (Fig. 4A; Supplementary Fig. S9A; Methods). 
As controls, we also initiated tumors with Lenti-sgTS85/Cre 
pool in KT;H11LSL-Cas9 and KT mice and analyzed them after 
15 weeks (Fig. 4A).
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After 26 weeks of tumor growth, inactivation of Cdkn2a, 
Dnmt3a, Cmtr2, Kdm6a, and Ncoa6 significantly increased 
tumor burden (Fig. 4B). Furthermore, inactivation of Rbm10, 
Cmtr2, Rnf43, and Tsc1 still increased tumor sizes at defined 
percentiles of the distribution as well as the log-normal mean 
tumor size at this later time point (Supplementary Fig. S9B). 
These results confirm the tumor-suppressive function of these 
genes. Importantly, inactivation of several other genes that had 
marginal to no effects on tumor sizes after 15 weeks of tumor 
growth, including Keap1, Kdm6a, Ncoa6, Cdkn2a, Dnmt3a, and 
Dot1l, broadly increased tumor sizes after 26 weeks of tumor 
growth (Fig. 4C–F). Thus, analysis of growth metrics at mul-
tiple time points after tumor initiation can provide temporal 
resolution of tumor suppressor gene effects.

Tuba-seq Captures Additional Aspects of Tumor 
Suppressor Gene Function

In addition to uncovering tumor suppressor genes that 
limit overall growth, our methods can quantify other aspects 
of cancer initiation and progression affected by these genes 
and pathways. The relative tumor burden induced by each 
Lenti-sgRNA/Cre vector was mostly consistent with the 
growth effects uncovered using tumor sizes at defined per-
centiles (Supplementary Fig. S10A). However, the effects of 
inactivating some genes on relative tumor burden were dis-
proportionately large (Supplementary Fig. S10A and S10B). 
For example, Trp53 was clearly a tumor suppressor based on 
relative tumor burden, but p53 inactivation did not greatly 
increase overall tumor growth as assessed by log-normal mean 
or tumor sizes up to the 95th percentile tumor (Supplemen-
tary Fig. S10A). Inactivation of several other genes also had 
much more significant and dramatic effects on relative tumor 
burden than on tumor sizes (Supplementary Fig. S10B and 
S10C). These disproportionate increases in relative tumor 
burden could result from genotype-specific increases in tumor 
number and/or the sizes of the very largest tumors, neither of 
which are captured well by log-normal mean or tumor sizes at 
defined percentiles of the tumor size distribution.

Many Tumor Suppressors Constrain  
Tumor Initiation

Our experimental design, in which we initiated tumors in 
cohorts of KT;H11LSL-Cas9 and KT mice with the same pool of 
lentiviral vectors, enabled us for the first time to use Tuba-
seq to uncover the impact of each putative tumor suppressor 
gene on tumor initiation and very early oncogenic KRAS–
driven epithelial expansion (Supplementary Fig. S4C and 
Methods). The genetic alterations that drive the development 
of very early epithelial expansions are poorly understood, yet 
these events influence tumor incidence and set the stage for 
all subsequent events during cancer evolution. In vivo mouse 
models are particularly well suited to study the effects of 
genetic alterations on these early events.

Fifteen weeks after tumor initiation, inactivation of many 
genes, including Lkb1, Setd2, and Stag2, which had some of 
the most dramatic effects on tumor growth, did not increase 
tumor number (defined as the number of clonal expansions 
with more than 200 cells; Fig. 5A; Supplementary Fig. S4C 
and Methods). However, Pten inactivation increased tumor 
number by ∼4-fold, suggesting that at least three fourths of 

epithelial cells expressing oncogenic KRASG12D fail to expand 
beyond 200 cells, if at all (Fig. 5A and B). Tsc1 inactivation also 
increases tumor number, albeit to a lesser extent, consistent 
with TSC1 suppressing mTOR downstream of PI3K (49). 
Inactivation of Nf1, Rasa1, and Trp53 also increased tumor 
number, thus implicating several signaling pathways in the 
earliest stages of lung tumor development (Fig. 5A). Strik-
ingly, inactivation of four members of the COMPASS complex 
(Kdm6a, Ncoa6, Kmt2c/Mll4, and Kmt2d/Mll3; refs. 50, 51) all 
increased tumor number (Fig. 5A). The importance of his-
tone H3K4 methylation mediated by this complex is further 
substantiated by the mutation of at least one member of this 
complex in 11.7% to 24.2% of human lung adenocarcinomas 
(Fig. 5C and D; ref. 2). Importantly, genes that limit tumor ini-
tiation and those that constrain tumor growth are often inde-
pendent, suggesting that these facets of tumor suppression 
can represent distinct functions (Supplementary Fig. S11A).

Analysis of the effect of each genotype on tumor number 
in mice with tumors initiated with the Lenti-sg85/Cre pool 
(at both 15 and 26 weeks after tumor initiation) provided 
us with the opportunity to further validate the effect of 
tumor suppressor inactivation on tumor initiation and early 
growth (Fig. 5E; Supplementary Fig. S11B and S11C). The 
effects of inactivating each tumor suppressor gene on relative 
tumor number were highly correlated across all three data 
sets (Fig. 5F; Supplementary Fig. S11D and S11E). Several 
genes, including Cdkn2a, Dnmt3a, Kdm6a, and Ncoa6, that 
initially increased only tumor number also increased overall 
growth fitness at the later time point. This suggests some link 
between the cellular changes that enable normal epithelial 
cells to break through the constraints of early hyperplastic 
growth and the greater fitness in the resulting tumors (Figs. 
4F and 5F; Supplementary Fig. S9B).

Tumor Suppressor Inactivation Allows the 
Emergence of Rare but Very Large Tumors

Next, we took advantage of the per-tumor resolution of 
our Tuba-seq data to quantify the impact of inactivating each 
gene on the generation of exceptionally large tumors. In addi-
tion to the effects of tumor suppressor gene inactivation on 
overall tumor growth and tumor initiation, the development 
of exceptionally large tumors is suggestive of genotypes that 
promote or allow additional alterations to drive aggressive 
tumor growth. We previously found that one major effect of 
Trp53 deficiency is the generation of exceptionally large tumors 
(26, 27). Using metrics such as the Hill estimator (a measure of 
the heavy-tailedness of a distribution; ref. 52), we quantified 
the extent to which Trp53 inactivation enables the emergence 
of infrequent but exceptionally large tumors after 15 weeks of 
tumor growth (Fig. 6A and B; Supplementary Fig. S12A). The 
effect of Trp53 inactivation is consistent with many previous 
reports documenting the emergence of large lung tumors in 
KrasLSL-G12D/+;Trp53flox/flox mice (32, 53–55). These analyses also 
showed that inactivation of Cdkn2a and the DNA methyltrans-
ferase Dnmt3a might allow some tumors to grow to dispropor-
tionately large sizes (Fig. 6A and B; Supplementary Fig. S12A).

To further investigate the effects of tumor suppressor gene 
inactivation on the emergence of exceptionally large tumors, 
we determined which genotypes generate heavy-tailed tumor 
size distribution after 26 weeks of tumor growth. Analysis 
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Figure 5.  Tumor initiation is inhibited by diverse tumor suppressor genes independent of their effects on tumor growth. A, Inactivation of many tumor 
suppressor genes increases tumor number, highlighting pathways that normally constrain the earliest steps of carcinogenesis. The effect of each sgRNA 
on tumor number 15 weeks after tumor initiation with Lenti-sgTS102/Cre in KT;H11LSL-Cas9 mice is shown. Error bars indicate 95% confidence intervals. 
The 95% confidence intervals and P values were calculated by bootstrapping. sgRNAs that significantly increase or decrease tumor number are colored 
as indicated. sgInerts are in gray and the dotted line indicates no effect. Genes and sgRNAs are ordered as in Fig. 2A. B, Genotype-specific effects on 
growth (represented by the size of the tumor at the 95th percentile) and tumor number can be independent aspects of tumor suppression. C and D, 
Mutation frequency of members of the COMPASS complex in human lung adenocarcinoma. Data are shown as the number of patients with mutations 
in one or more of the COMPASS complex subunits/total patient number from GENIE (C) as well as TCGA and TRACERx (D). Data from GENIE are based 
on panel sequencing and therefore do not include data on NCOA6. Data from TRACERx are from multiregion sequencing where we report the number of 
tumors that had any of these four genes mutated in one or more regions. E, The effect of each sgRNA on tumor number 26 weeks after tumor initiation 
with Lenti-sgTS85/Cre in KT;H11LSL-Cas9 mice is shown. Error bars indicate 95% confidence intervals. The 95% confidence intervals and P values were cal-
culated by bootstrapping. sgRNAs that significantly increase or decrease tumor number are colored as indicated. sgInerts are in gray and the dotted line 
indicates no effect. Genes and sgRNAs are ordered as in A. F, Effects of tumor suppressor gene inactivation on tumor number are highly reproducible. The 
impact of inactivating each gene on tumor number at 15 weeks (Lenti-sgTS102/Cre 15 weeks) and 26 weeks (Lenti-sgTS85/Cre 26 weeks) after tumor 
initiation is shown. Each dot represents an sgRNA. Statistics are calculated from aggregating all tumors from all mice in each group in each experiment. 
Pearson correlation coefficient (r) shows correlation.
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of the distributions of tumor sizes specifically highlighted 
the development of exceptionally large Dnmt3a- and Cdkn2a- 
targeted tumors (Fig. 6C–E; Supplementary Fig. S12B–S12D). 
Both sgRNAs targeting Cdkn2a are anticipated to inactivate 
both INK4A and ARF; therefore, the effect of Cdkn2a inacti-
vation could reflect the combined deregulation of the Rb and 
p53 pathways, consistent with our observation that p53 inac-
tivation generates a heavy-tailed distribution (Fig. 6A and B; 
Supplementary Fig. S12A; refs. 26, 27). The emergence of very 
large Cdkn2a- and Dnmt3a-deficient tumors is consistent with 
the increased lung tumor burden in oncogenic KrasLSL-G12D-
driven tumors with Cre/lox-mediated inactivation of these 
genes (56, 57). However, the per-tumor resolution of our data 

suggests that the inactivation of INK4A/ARF or the DNA 
methyltransferase DNMT3A enables the emergence of rare 
but exceptionally large tumors while having only a modest 
impact on the growth of most tumors (Fig. 6E; Supplemen-
tary Fig. S12C). Therefore, the role of tumor suppressors in 
preventing the development of exceptionally large tumors 
can be independent of their roles in regulating tumor initia-
tion and overall growth during cancer evolution.

Limited Effects of Overall Tumor Burden and Sex 
on Tumor Suppressor Function

Our high-resolution data across multiple facets of 
tumor suppression in principle allow for quantification of 
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Figure 6.  Loss of Trp53, Cdkn2a, and Dnmt3a result in the development of rare yet exceptionally large tumors. A, Plot of tumor sizes for each indicated 
sgRNA in KT;H11LSL-Cas9 mice at 15 weeks. Each dot represents a tumor and the area of the dot scales with neoplastic cell number within the tumor. For 
better visualization, an equal number of tumors (n = 1,160) are shown for each sgRNA. B, Volcano plot of the impact of inactivating each putative tumor 
suppressor gene on the development of exceptionally large tumors (Hill estimator compares tumors above the 95th percentile with those at the 95th 
percentile to quantify the relative size of tumors in the tail of the distribution). Trp53- and Dnmt3a-targeted tumors are heavy-tailed, suggesting that 
loss of these genes promoted the emergence of exceptionally large tumors. Each dot represents an sgRNA. C, Plot of tumor sizes for each indicated 
sgRNA in KT;H11LSL-Cas9 mice at 26 weeks. Each dot indicates a tumor, and the area of the dot indicates neoplastic cell number within the tumor. An equal 
number of tumors (n = 814 tumors randomly sampled) are shown for each sgRNA. D, Volcano plot of the impact of inactivating each putative tumor sup-
pressor gene on the development of infrequent exceptionally large tumors (Hill estimator). Each dot represents an sgRNA. Statistics are calculated from 
aggregating all tumors from 40 KT;H11LSL-Cas9 (26 weeks) mice. E, Inactivation of Dnmt3a and Cdkn2a generates tumor size distributions with heavy tails. 
Probability density plots for tumor sizes show the profile of aggregated tumors with sgInerts as well as individual sgRNAs targeting either Dnmt3a or 
Cdkn2a. Data are aggregated from all tumors from 40 KT;H11LSL-Cas9 (26 weeks) mice.

the effects of other variables on tumor suppressor effects. 
Given that overall tumor burden varies across mice and 
that we initiated tumors in mice of both sexes, we assessed 
how these variables influence tumor suppressor effects. 
To uncover whether overall tumor burden influences 
genotype-specific effects, we divided our KT;H11LSL-Cas9  
mice with Lenti-sgTS102/Cre-initiated tumors into three 
groups with low, medium, and high tumor burden and 
reassessed multiple metrics of tumor initiation and growth 
(Supplementary Fig. S13A). Very few genotype-specific 
tumor-suppressive effects were influenced by overall tumor 
burden, suggesting that our results are largely unaffected 
by potential differences in paracrine or physical interac-
tions that change with tumor density (Supplementary Fig. 
S13B–S13E).

There is a growing interest in understanding sex-specific 
effects on all aspects of carcinogenesis. Our data derived 
from both male and female mice allowed us to investigate 

sex-specific differences in tumor suppression. Inactivation 
of most genes, including those on the X chromosome, had 
similar effects on tumor growth and tumor number in male 
and female mice (Supplementary Fig. S14A–S14D). Thus, 
tumor suppressor effects in lung cancer are not dramatically 
affected by differences in the host environment driven by 
sex. This was particularly illuminating for Kdm6a, which is 
an X-linked gene that has both H3K27me3 demethylase and 
nonenzymatic functions (58). Its nonenzymatic function can 
be compensated for by its paralog UTY on the Y chromo-
some, and thus different effects in male and female mice have 
been used to provide insight into the molecular function of 
KDM6A (58). Kdm6a inactivation increased tumor number 
similarly in male and female mice. The effects were consistent 
in our data at 15 and 26 weeks after tumor initiation, sug-
gesting that the impact of KDM6A inactivation is most likely 
driven by loss of its enzymatic function (Supplementary Fig. 
S14E–S14H).
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Evaluation of Sensitivity and Specificity
To better estimate the impact of false negatives and false 

positives on our data, we used all of our data sets to estimate 
the true-positive rate (Methods). Within all of our data sets, 
the effects of sgRNAs targeting the same gene were concord-
ant across multiple metrics, consistent with on-target effects 
(Figs. 2 and 4; Supplementary Fig. S15A–S15F). For instance, 
in our experiment using Lenti-sgTS102/Cre pool, when one 
sgRNA showed a significant tumor-suppressive effect (nomi-
nal P < 0.05), the probability to redetect the significant effect 
using the other guide was above 89% for all metrics assessed 
(Supplementary Table S3). Thus, the probability that both 
sgRNAs fail to uncover a functional tumor suppressor that 
has a similar effect to the tumor suppressors identified in 
our analysis is below 5% (Supplementary Table S3). Note 
that for the eight major tumor suppressor genes that were 
excluded from the Lenti-sgTS85/Cre pool, significant effects 
for both sgRNAs were uncovered in every case. Given these 
results and the targeting of each putative tumor suppressor 
gene with two sgRNAs, it is unlikely that functional tumor 
suppressors were missed for technical reasons. Furthermore, 
analysis of sgRNA cutting in cells in culture showed compa-
rable efficiency of sgRNAs targeting genes that emerged as 
tumor suppressors and those that did not (Supplementary 
Fig. S15G–S15I). Finally, power calculations using our data 
suggest that an even larger number of genes could be assessed 
using reasonable numbers of mice using these methods (Sup-
plementary Fig. S16A–S16C).

Human Mutational Data, Cell Line Studies, and 
In Vivo Functional Studies Are Complementary  
in Defining a Catalog of Tumor Suppressors

The candidate tumor suppressor genes that we assessed 
were chosen based on existing human mutational data; how-
ever, each gene has different levels of correlative data support-
ing its function as a tumor suppressor (Supplementary Table 
S1). We explored whether effects on tumorigenesis within 
the autochthonous environment could be predicted either 
by human mutation data or through the analysis of human 
cell lines. Several strong functional tumor suppressors did 
not stand out based on the human mutational frequency 
data, and genes such as STAG2, CMTR2, and CDKN2C were 
not often predicted to be tumor suppressor genes based 
on human mutational data (Fig. 2A; Supplementary Fig. 
S17A–S17G). Thus, computational predictions of tumor 
suppressor function from mutational data alone (including 
statistical methods that integrate background mutation rate 
corrections as well as function- and structure-based impact 
predictions) nominate some but not all functional tumor 
suppressors.

Analysis of data from the Dependency Map (59), in which 
genome-scale knockout screens were performed across 
diverse cancer cell lines, was also revealing. Inactivation of 
several top functional tumor suppressors, including PTEN, 
CDKN2C, RB1, and RNF43, increased lung adenocarcinoma 
cell line growth as expected (Supplementary Fig. S17H). How-
ever, inactivation of several other major functional tumor 
suppressors, including LKB1, SETD2, and STAG2, paradoxi-
cally decreased cancer cell growth in culture (Supplementary 

Fig. S17H). The effects of inactivating several modest tumor 
suppressors were concordant between the human cell lines 
and in vivo mouse model data, although inactivation of some 
genes, including CMTR2, RBM10, and KEAP1, had variable or 
growth-suppressive effects on cancer cells in culture (Fig. 4B; 
Supplementary Fig. S17H). Collectively, these results under-
score the differences in the fitness landscape in cell lines and 
indicate that in vivo studies can complement these analyses.

DISCUSSION
The enormous genomic diversity in cancer, even within 

tumors of the same subtype, creates a challenge for iden-
tifying driver genes and deciphering their roles in tumor 
development. Given the sample sizes of cancer genome 
sequencing studies, variation in genomic features such as 
location, expression, and composition will continue to make 
computational predictions of tumor suppressor function 
from mutation data difficult, except for a subset of genes (9, 
60, 61). Moreover, mutation frequencies alone cannot easily 
define the importance of each tumor suppressor gene and 
even less so be used to glean their mode of action. Indeed, 
even rarely mutated tumor suppressor genes can have large 
consequences when inactivated, with the rarity of mutation 
being driven by mutational cold spots, epistatic interactions, 
and biological context (9, 62) rather than by the magni-
tude of their inhibitory function (Supplementary Fig. S17A). 
Thus, although experiments using model organisms could be 
affected by species-specific effects, in vivo functional studies 
that include autochthonous tumor initiation, growth, and 
progression are an important complement to the compu-
tational investigation of tumor suppressor inactivation in 
human tumors (13, 20, 21).

Carcinogenesis is broadly affected by different aspects of the 
in vivo environment. By enhancing the throughput, sensitivity, 
and precision of Tuba-seq (26, 27), we quantify the effects of 
inactivating a diverse panel of putative tumor suppressor genes 
in an autochthonous mouse model of oncogenic KRAS–driven 
lung cancer. The parallel analysis of ∼50 different genotypes 
not only uncovered previously uncharacterized functional 
tumor suppressor genes but also provided new insights into 
the landscape of tumor suppression and multiple modes of 
action of tumor suppressor genes (Fig. 7A and B). We show 
that tumor suppression is unexpectedly complex and multi-
faceted, with some genes suppressing tumor initiation, some 
constraining overall tumor growth, and others limiting the 
emergence of a small proportion of unusually fast-growing 
tumors (Fig. 7A and B). Furthermore, although some genes 
affect only a single feature of carcinogenesis, others affect 
multiple facets of tumor evolution to varying extents (Fig. 7C). 
The relative importance of these genes can also change during  
the course of carcinogenesis (Fig. 7B and C). Understand-
ing the impact of tumor suppressors that primarily regulate 
certain aspects of carcinogenesis may have a unique value 
for cancer prevention, early detection, and therapeutic target-
ing. The discovery of such functional complexity points to 
shifting challenges during different stages of carcinogenesis. 
Thus, tumor suppressors are not simply “brakes” on prolifera-
tion but rather contextually and temporally dependent genetic 
modifiers of different phases of carcinogenesis.
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Our results are largely consistent with previous studies 
that assessed some of these genes individually using similar in 
vivo mouse models of lung cancer (22, 26, 31–34, 51, 63, 64). 
However, single-gene approaches and quantification of overall 
tumor burden alone are limited in their ability to uncover the 
modes of tumor suppression and do not enable direct com-
parison across many genotypes. For example, although Lkb1, 
Pten, Kdm6a, Dnmt3a, and Trp53 inactivations each increase 

overall tumor burden, our quantitative, multiplexed design 
and computational platform uniquely enabled the deconvolu-
tion of different aspects of tumor suppression (Fig. 7A).

We show that the inactivation of many understudied genes 
has major effects on tumor growth (Fig. 7C; Supplementary 
Fig. S3). Identifying additional genes that are fundamentally 
important in suppressing carcinogenesis, including those that 
are less frequently mutated in human lung adenocarcinoma, 
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can highlight key molecular and cellular processes that are 
critical in cancer. Furthermore, alterations in cis-regulatory 
elements, epigenetic silencing, and mutations in other mem-
bers of the same complexes or pathways likely dysregulate 
these processes in a much higher percentage of tumors. Thus, 
these types of in vivo findings not only suggest the importance 
of certain genes but also more broadly uncover underappreci-
ated cellular processes that limit cancer development. Our 
findings nominate several novel genes and key pathways that 
should be investigated in further mechanistic detail. In par-
ticular, the mechanisms by which STAG2 inactivation drives 
lung cancer growth remain to be elucidated.

One key approach used to implicate the context dependency 
of tumor suppressor function is the analysis of mutual exclu-
sivity in human data (65). Interestingly, our data demonstrate 
that genes that trend toward mutual exclusivity with oncogenic 
KRAS mutations, such as NF1 and PTEN, are still important sup-
pressors of oncogenic KRAS–driven lung cancer (Supplemen-
tary Fig. S17B). Such statistical trends toward mutual exclusivity 
should not be misinterpreted as the lack of tumor-suppressive 
effect of these genes in oncogenic KRAS–driven lung cancer, and 
more generally, these types of patterns in mutation data should 
be interpreted with caution (66). Instead, these patterns likely 
reflect complex epistatic interactions in which context depend-
ence drives frequencies and mutation spectra (9, 62).

Our data, coupled with human lung adenocarcinoma 
sequencing studies, provide the most comprehensive map of 
in vivo tumor suppressor gene function for cancer (Fig. 7C). 
Given the quantitative and cost-effective nature of Tuba-seq, 
even broader studies of many other genes and combina-
tions of genomic alterations may be warranted. Moreover, 
studies across different genetic and environmental contexts 
may further elucidate and refine the modality and context 
dependence of tumor suppressor gene effects (27, 67, 68). 
This should lead to a more thorough understanding of the 
interactions between cell-intrinsic and cell-extrinsic processes 
that contribute to the etiology and evolution of lung cancer.

METHODS
Selection of Candidate Tumor Suppressor Genes for This Study

To select candidate genes to assess in vivo using Tuba-seq (and to com-
plement genomics and cell biology approaches), we generated a highly 
human-curated panel that integrates many different considerations.

Known lung adenocarcinoma driver tumor suppressor genes at 
>5% mutational frequency (such as TP53, LKB1, CDKN2A, KEAP1) 
from TCGA, AACR Project GENIE, and  TRACERx data sets, which 
were previously assessed by Tuba-seq, were included as positive 
controls. We included genes that tend to co-occur with oncogenic 
KRAS mutations and those that do not. We also included genes 
that have been categorized as tumor suppressor genes in other can-
cer types with >5% mutational frequency in lung (such as KDM6A 
and FAT1), even if they are not predicted to be involved in lung 
adenocarcinoma (Fig. 1A; Supplementary Fig. S1; Supplementary 
Table S1).

We also considered the distribution of mutations within genes (Fig. 
1B), including low-mutation frequency genes (<5%) that show poten-
tial clonal or subclonal bias from the TRACERx data set (Supplemen-
tary Table S1), genes with discrepancies in scoring of potential driver 
activity (Supplementary Fig. S2), and genes that represent biological 
processes or functions commonly associated with carcinogenesis (Sup-
plementary Fig. S3). From a curated survey of literature, candidate 

genes that have been discussed as cancer driver genes without much or 
any functional data were also included (Supplementary Fig. S4).

Analysis of Human Lung Adenocarcinoma Cancer Genome 
Sequencing Data

Mutation frequencies and other information for the 48-gene panel 
of putative candidate tumor suppressor genes (TSG) are available 
from multiple cancer data sets and their analyses in TRACERx (6), 
GENIE (2), and TCGA (7, 69, 70). Oncogenes are characterized 
by missense point mutations arising in mutational hotspots. In 
contrast, TSGs are characterized by protein truncating mutations 
(nonsense and frameshifts) that are more dispersed across the tran-
script. Moreover, when nonsense and frameshift mutations arise 
in oncogenes, they tend to truncate C-terminal domains and occur 
toward the end of the transcript. To identify putative TSGs, we 
characterized all genes in this survey by these two genetic features: 
mutational hotspots and the fraction of protein truncated per muta-
tion. We used all point mutations and short insertion and deletions 
found within the TCGA lung adenocarcinoma (7) and Catalogue of 
Somatic Mutations in Cancer (71) databases. The extent of muta-
tional hotspots within a gene was determined using a normalized 
measure of dispersion (Green’s contagion) of the number of missense 
mutations observed within all five residue rolling windows in each 
gene: (σ2/μ − 1)/(μN − 1), where μ is the mean number of missense 
mutations observed within each window, σ2 is the unbiased estimator 
of the variance, and N is the number of missense mutations. Green’s 
contagion and the five-residue window size were chosen because they 
maximized the accuracy of classification of known oncogenes and 
tumor suppressors. Larger values of Green’s contagion suggest that 
mutations are clumping at a few residues within the protein and that 
the mutant gene is likely oncogenic. This measure has a value of zero 
when mutations are randomly dispersed throughout the gene and 
can be negative when mutations are underdispersed. The fraction 
of protein truncated per mutation is the mean number of amino 
acids lost per nonsynonymous mutation. It is calculated by simply 
averaging the fraction of a transcript lost due to each frameshift and 
nonsense mutation while assigning a value of zero to all missense 
mutations in this collective average.

To summarize what has previously been described about the 
biological functions of the candidate genes, we used driver gene 
scores from attempts to discover cancer driver genes using multiple 
approaches, such as weighted consensus across multiple tools (8) 
and prediction by machine learning (29). We also collated the known 
biological processes and subcellular localization of the 48 genes from 
the Gene Ontology database (release date 2019–07–01; ref. 30).

For co-occurrence of mutations in KRAS and each selected gene, the 
odds ratio [equals (Nneither were mutated * NBoth were mutated)/(Nonly KRAS is mutated * 
Nonly selected gene is mutated)] and P value (one-sided Fisher exact test) were 
available on cBioPortal.org. In total, 566 lung adenocarcinoma 
cases from TCGA Pan-Cancer Atlas and 8,522 lung adenocarcinoma 
samples from GENIE Cohort v8 were analyzed. Note that NCOA6, 
ATF7IP, CMTR2, and UBR5 are not profiled in any GENIE lung 
adenocarcinoma cases and hence were excluded from the analysis. 
For the fitting of a simple linear regression between measured phe-
notypes and observed clinical parameters, we used data from muta-
tion timing and clonality in lung adenocarcinomas that have been 
previously described (6, 70).

Analysis of Publications Suggesting  
Tumor-Suppressive Function of Each  
Putative TSG in Lung Cancer

A list of articles related to the gene was accessed through the “Biblio
graphy” section of NCBI Gene (https://www.ncbi.nlm.nih.gov/gene/).  
Subsequently, “lung cancer” and/or “tumor suppressor” were used as 
the keywords to refine the search.
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Calculation of Gene Inclusion in Gene-Sequencing Panels
GENIE panel sequencing information was compiled through the 

GENIE 6.1 Public Release. We first generated a list of panels that 
provided data from patients with “cancer type detailed” listed as 
“lung adenocarcinoma,” “lung adenocarcinoma in situ,” or “lung 
adenosquamous carcinoma” by filtering the data_clinical_sample.
txt file. Then, by parsing the genie_combined.bed file, we generated 
a list of “screened” genes for each panel, which refers to genes that 
have “Feature_Type” listed as “exon” and “includeInPanel” listed as 
“True.” This list was then used to categorize our pool of tumor sup-
pressors as either “screened” or “unscreened” by these sequencing 
panels. Stanford Solid Tumor Actionable Mutation Panel (STAMP) 
and FoundationOne CDx sequencing panels were obtained from the 
official websites.

Design, Generation, Barcoding, and Production  
of Lentiviral Vectors

The sgRNA sequences targeting the putative tumor suppressor 
genes were designed using Desktop Genetic’s Guide Picker (ref. 72; 
https://genomesunzipped.org/best-genealogy-software/) to prioritize  
on-target activity (score of >0.6; ref. 73), specificity (score of >0.6; ref. 
74), likelihood of generating frameshift indels (score of >0.6; ref. 75), 
targeting of maximal number of transcript isoforms, no homopoly-
mer runs in the sgRNA, and no extremes in GC content of sgRNA 
(0.4–0.75), as detailed in Supplementary Table S2.

The Lenti-U6-sgRNA-sgID-barcode-Pgk-Cre vector was modified 
from our previous work (26) as follows. The sgRNA sequence of the 
previously described pLenti-sgNT1/Cre (Addgene #66895) vector was 
replaced with GCGAGGTATTACCGGCGTATCATCCGCG by site-
directed mutagenesis to generate pLenti-BaeI-Pgk-Cre. The replace-
ment sequence contains a recognition site for the type IIS restriction 
endonuclease BaeI, allowing for quick replacement of the sgRNA 
sequence. To generate each desired vector, forward and reverse single- 
stranded oligonucleotides containing the sgRNA sequence and com-
plementary overhangs are annealed and ligated into the BaeI-linearized  
pLenti-BaeI-Pgk-Cre vector using T4 DNA ligase. The barcode oligo 
primer contains the 8-nucleotide sgID sequence and 20-nucleotide 
degenerate barcode (Supplementary Table S2). The generation of 
the barcode fragment and subsequent ligation into the vectors were 
performed as previously described (26).

Lenti-sgRNA/Cre vectors were individually cotransfected into 
293T cells with pCMV-VSV-G (Addgene #8454) envelope plasmid 
and pCMV-dR8.2 dvpr (Addgene #8455) packaging plasmid using 
polyethylenimine. Supernatants were collected at 48 and 72 hours 
after transfection, filtered through a 0.45-μm syringe filter unit  
(Millipore SLHP033RB) to remove cells and debris, concentrated 
by ultracentrifugation (25,000 × g for 1.5 hours at 4°C), and resus-
pended in PBS. Each virus was titered against a standard of known 
titer using LSL-YFP mouse embryonic fibroblasts (MEF; a gift from 
Dr. Alejandro Sweet-Cordero/UCSF). These MEFs and 293T cells 
were regularly tested with the MycoAlert Mycoplasma detection kit 
(Lonza, cat. LT07–418) to make sure that they were free of Myco-
plasma. All lentiviral vector aliquots were stored at −80°C and thawed 
and pooled at equal ratios immediately prior to delivery to mice.

Mice and Tumor Initiation
The use of mice for the current study has been approved by Insti-

tutional Animal Care and Use Committee at Stanford University, 
protocol number 26696.

KrasLSL-G12D/+ (RRID:IMSR_JAX:008179), R26LSL-tdTomato (RRID:IMSR_ 
JAX:007909), and H11LSL-Cas9 (RRID:IMSR_JAX:027632) mice have 
been previously described (24, 76, 77). They were on a C57BL/6:129 
mixed background. The Stag2tm1c(EUCOMM)Wtsi/J (Stag2flox) mice were 
initially generated by Viny and colleagues (42) and obtained from the 

Jackson Laboratory (RRID:IMSR_JAX:030902). Tumors were initi-
ated by intratracheal delivery of 60 μL of lentiviral vectors dissolved 
in PBS.

For the initial experiments, tumors were allowed to develop for 15 
weeks after viral delivery of a lentiviral pool that contained 102 bar-
coded Lenti-sgRNA/Cre vectors (Lenti-sgTS102/Cre). Tumors were 
initiated in KrasLSL-G12D;R26LSL-Tom/LSL-Tom (KT) mice with 9 × 104 infec-
tious units (ifu)/mouse of the Lenti-sgTS102/Cre pool (12 mice ana-
lyzed at 15 weeks after tumor initiation) and in KT;H11LSL-Cas9/LSL-Cas9  
mice with 3 × 104 ifu/mouse of the Lenti-sgTS102/Cre pool (47 mice 
analyzed at 15 weeks after tumor initiation).

After the detection of the top functional tumor suppressors after 15 
weeks of tumor development, tumors were initiated in additional mice 
using a subpool of 85 Lenti-sgRNA/Cre vectors (Lenti-sgTS85/Cre), 
which excluded the vectors targeting Cdkn2c, Lkb1, Nf1, Trp53, Pten, 
Rb1, Setd2, and Stag2. Tumors were initiated in KT mice with 2.5 × 105  
ifu/mouse (6 mice analyzed at 15 weeks after tumor initiation), 
KT;H11LSL-Cas9 mice with 6 × 104 ifu/mouse (10 mice analyzed at  
15 weeks after tumor initiation), and KT;H11LSL-Cas9 mice with 1.5 × 104  
ifu/mouse (40 mice analyzed at 26 weeks after tumor initiation).

For the validation experiments using Lenti-sgRNA/Cre-mediated 
gene inactivation, tumors were allowed to develop for 15 weeks after 
viral delivery. Tumors were initiated with individual barcoded Lenti-
sgRNA/Cre vectors in KT mice with 1 × 105 ifu/mouse (3 mice per 
vector analyzed at 15 weeks after tumor initiation) and KT;H11LSL-Cas9  
mice with 1 × 105 ifu/mouse (5–6 mice per vector analyzed at 15 weeks  
after tumor initiation).

For the survival experiments using Lenti-sgRNA/Cre-mediated 
gene inactivation, tumors were allowed to develop until humane end-
points. Tumors were initiated in KT;H11LSL-Cas9 mice with individual 
barcoded Lenti-sgInert/Cre vectors at 2 × 104 ifu/mouse and with 
individual barcoded Lenti-sgStag2/Cre vectors at 1 × 104 ifu/mouse 
(7 mice per vector analyzed).

For Stag2 validation experiments using the Stag2floxed allele, tumors 
were initiated with Lenti-sgInert/Cre in KT, KT;Stag2flox/+, KT;Stag2flox/flox,  
and KT;Stag2flox/y mice with 1 × 105 ifu/mouse (4–5 mice per group 
analyzed) and allowed to develop for 15 weeks, as well as KT, KT; 
Stag2flox/+, KT;Stag2flox/flox, and KT;Stag2flox/y mice with 1 × 105 ifu/
mouse (6–7 mice per genotype analyzed) and allowed to develop until 
humane endpoints.

Tuba-seq Library Generation
Genomic DNA was isolated from bulk tumor–bearing lung tissue 

from each mouse as previously described (26). Briefly, benchmark 
control cell lines were generated from LSL-YFP MEFs transduced by 
a barcoded Lenti-sgNT3/Cre vector (NT3: an inert sgRNA with a dis-
tinct sgID) and purified by sorting YFP+ cells. For mice initiated with 
Lenti-sgTS102/Cre pool, 12 benchmark control cell lines (3 cell lines 
of 500,000 cells each, 3 cell lines of 50,000 cells, 3 cell lines of 5,000 
cells, and 3 cell lines of 500 cells) were added to each mouse lung 
sample prior to lysis to enable the calculation of the absolute number 
of neoplastic cells in each tumor from the number of sgID-BC reads. 
Because the standard curve was highly linear, we reduced the bench-
mark controls to three cell lines with 500,000 cells each for the Lenti-
sgTS85/Cre pool. Following homogenization and overnight protease 
K digestion, genomic DNA was extracted from the lung lysates using 
standard phenol-chloroform and ethanol precipitation methods.

Subsequently, Q5 High-Fidelity 2× Master Mix (New England 
Biolabs, M0494X) was used to amplify the sgID-BC region from 
32 μg genomic DNA. The unique dual-indexed primers used were 
forward: AATGATACGGCGACCACCGAGATCTACAC-8 nucleotides 
for i5 index-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-6 to 
9 random nucleotides for increased diversity-GCGCACGTCTGC 
CGCGCTG and reverse: CAAGCAGAAGACGGCATACGAGAT-6 
nucleotides for i7 index-GTGACTGGAGTTCAGACGTGTGCTCTTC 
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CGATCT-9 to 6 random nucleotides for increased diversity-CAGGT 
TCTTGCGAACCTCAT. The PCR products were purified with Agen-
court AMPure XP beads (Beckman Coulter, A63881) using a double-
size selection protocol. The concentration and quality of the purified 
libraries were determined using Agilent High Sensitivity DNA Kit 
(Agilent Technologies, 5067–4626) on the Agilent 2100 Bioanalyzer 
(Agilent Technologies, G2939BA). The libraries were pooled based 
on lung weight to ensure even reading depth, cleaned up again using 
AMPure XP beads, and sequenced (read length 2 × 150 bp) on the 
Illumina HiSeq 2500 or NextSeq 550 platform (Admera Health Biop-
harma Services).

Code and Data Availability
Python 3.6 and R 3.6 were used for analyzing the data. The codes are 

available on GitHub (https://github.com/lichuan199010/functional- 
taxonomy-of-tumor-suppressors).

The data sets generated and analyzed in the current study are 
available in the NCBI Gene Expression Omnibus database (token: 
ezsjeksixhkvbqh; link: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE146302).

Process Paired-End Reads to Identify the sgID and Barcode
The FASTQ files were parsed to identify the sgID and barcode 

for each read. Each read is expected to contain an eight-nucleo-
tide sgID region followed by a random nucleotide barcode region 
(GCNNNNNTANNNNNGCNNNNNTANNNNNGC), and each of 
the 20 Ns represents random nucleotides. The sgID region identi-
fies the putative tumor suppressor gene being targeted, for which 
we require a perfect match between the sequence in the forward 
read and one of the 102 sgIDs with known sequences. Note that all 
sgID sequences differ from each other by at least three nucleotides. 
Therefore, the incorrect assignment of sgID due to PCR or sequenc-
ing error is extremely unlikely. All cells in a clonal expansion from 
a cell transduced by a lentiviral vector carry the same barcode. To 
minimize the effects of sequencing errors on calling the barcode, we 
require the forward and reverse reads to agree completely within the 
random nucleotide sequence to be further processed. In our pipeline, 
any “tumor” within a Hamming distance of 2 from a larger tumor is 
assigned as a “spurious tumor,” which likely results from sequencing 
or PCR errors and is removed from subsequent analysis. Reads with 
the same sgID and barcode are assigned to the same tumor. The 
tumor size (number of neoplastic cells) is calculated by normalizing 
the number of reads from an individual tumor to the number of 
reads from the benchmark control cell lines added to each sample 
prior to lung lysis and DNA extraction. The minimum sequencing 
depth was ∼1 read per 43 cells. We have high statistical power in 
identifying tumors with more than 200 cells, which was used as the 
minimum cell number cutoff for calling tumors.

Summary Statistics for Overall Growth Rate
Three summary statistics, relative sizes at defined percentiles, rela-

tive log-normal mean, and relative tumor burden (will be introduced 
below), were used to describe the overall tumor growth as previously 
described. Relative sizes at defined percentiles are nonparametric 
summary statistics for the tumor size distribution. Specifically, the 
relative sizes at Xth percentiles are calculated as the Xth percentile [X 
represents 50% (median), 60%, 70%, 80%, 90%, and 95%] of the tumor 
size distribution of sgTS tumors divided by the corresponding per-
centile of the tumor size distribution of all sgInert tumors. This ratio 
represents the growth advantage at various percentiles conferred by 
the inactivation of the tumor suppressor gene.

Relative size of tumors at th percentile

Neoplastic cell number at

X =

tthe th percentile for tumors
Neoplastic cell number at the th

X
X

sgTS
ppercentile for tumorssgInert

.

Log-normal mean is the maximum likelihood estimator for the 
mean number of neoplastic cells for sgTS tumors assuming a log-
normal distribution of tumor sizes. Similarly, we calculate the relative 
log-normal mean by dividing the log-normal mean of sgTS tumors by 
the log-normal mean of the sgInert tumors (Supplementary Fig. S4).

Relative log-normal mean
log-normal mean for tumors
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Summary Statistics for Heavy-Tailedness of the Tumor 
Size Distribution

Some tumor suppressor genes may lead to rare cases of exception-
ally large tumors, which results in a tumor size distribution with a 
heavy tail. We used two summary statistics, relative Hill estimator 
and relative steepness, to characterize the heavy-tailedness of the 
tumor size distribution.

The Hill estimator is a commonly used tail index to characterize the 
tail shape of heavy-tailed distributions (52). Suppose X1, X2, …, Xn are 
sgTS tumor sizes, and we order them by size such that X1 ≥ X2 ≥ … ≥Xn.  
Let Xk be the tumor size at the 95th percentile, and the Hill estimator 
is calculated as
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The relative Hill estimator is calculated by dividing the Hill estima-
tor for tumors with sgTS by that of tumors with sgInert.

Relative Hill estimator
for tumors

for tumors
=

H TS
H Inert

sg
sg

.

The steepness (99th percentile/95th percentile) is calculated as the 
ratio of the 99th percentile over the 95th percentile for the tumor size 
distribution for each sgID. Large values of these estimators indicate 
that the tumor size distributions are heavy-tailed. We calculate the 
relative steepness by dividing the steepness of tumors with sgTS by 
that of tumors with sgInert.

Steepness
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Ine

tumors
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.

Relative steepness
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For both relative Hill estimator and relative steepness, values 
higher than 1 indicate that the gene inactivation leads to a heavier 
tail, and values smaller than 1 indicate gene inactivation leads to a 
lighter tail than expected (Supplementary Fig. S4).

Summary Statistics for Relative Tumor Number and 
Relative Tumor Burden

The four metrics above compare the tumor size distribution of 
sgTS tumors relative to sgInert tumors and can be calculated for both 
KT;H11LSL-Cas9 mice and KT mice, separately. Unlike these size metrics, 
relative tumor number and relative tumor burden are affected lin-
early by lentiviral titer. Therefore, when calculating these two metrics, 
we normalized it to that in KT mice to account for the viral titer dif-
ferences among different Lenti-sgRNA/Cre vectors.

We normalized the observed tumor number for sgTS tumors in 
KT;H11LSL-Cas9 mice by dividing it by that of sgTS tumors in KT mice 
to account for the titer differences for each sgTS.

Tumor number

tumor number in mice
tumor number in

�

�
�
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The relative tumor number is calculated as the ratio of tumor 
number for each sgTS relative to sgInert:

Relative tumor number
Tumor number for tumors

Tumor number for
=

sgTS
ssgInert tumors

.

The relative tumor number is a metric that reflects the prob-
ability of tumor initiation. If the tumor suppressor genes normally 
constrain tumor initiation, inactivation of the gene will increase the 
relative tumor number to be larger than 1.

Similarly, we normalized the observed tumor burden for sgTS 
tumors in KT;H11LSL-Cas9 mice by dividing it by that of sgTS tumors. 
The relative tumor burden is calculated as the ratio of the tumor 
burden for each sgTS relative to sgInert:

Tumor burden
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neop
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TS.sg

Relative tumor burden
Tumor burden for tumors
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The relative tumor burden is determined mostly by the largest 
tumors. For instance, the top 1% of tumor cells accounts for more 
than 50% of total tumor burden in KT;H11LSL-Cas9 mice at 11 weeks. 
Both TS inactivation that leads to faster overall growth, rare but 
exceptionally large tumors, and tumor initiation rate will result in an 
increase in relative tumor burden (Supplementary Fig. S4).

Bootstrapping the Tumors
In the calculation of confidence intervals and P values, we needed 

to generate distributions of the statistic considering both variation 
of tumor sizes across mice and within the same mice. We adopted a 
two-step bootstrap resampling process. We first bootstrap resampled 
mice to generate a pseudogroup of mice, and then within each group 
of resampled mice, we bootstrap resampled all observed tumors car-
rying each sgID.

Calculation of Confidence Intervals and P Values  
for Size Metrics

We have four size metrics that describe the overall growth (relative 
log-normal mean, relative percentiles) and the heavy-tailedness (rela-
tive Hill estimator and relative steepness) of the tumor size distribu-
tion. For each of these metrics, we bootstrapped tumors 10,000 times 
and calculated 10,000 values of each statistic for these bootstrap 
resampling. The 95% confidence interval was calculated as the 2.5th 
percentile and the 97.5th percentile of these bootstrapped results, 
whereas the P value was calculated as the proportion of bootstrapped 
results that are not in the same direction as the observed score com-
pared with the baseline of 1.

Calculation of P Values for Tumor Burden  
and Tumor Number

We bootstrapped tumors in both the KT;H11LSL-Cas9 and KT mice and 
calculated the relative tumor burden and relative tumor number from 
these bootstrapped mice. The process was repeated 106 times. The 
95% confidence interval was calculated as the 2.5th percentile and the 
97.5th percentile of these bootstrapped results, whereas the P value was 
calculated as the proportion of bootstrapped values that are not in the 
same direction as the observed score compared with the baseline of 1.

Robustness to Tumor Burden Differences
To investigate whether overall tumor burden has an impact on 

genotype-specific tumor initiation and growth, we calculated sum-

mary statistics for tumor initiation and tumor size distribution on 
groups of mice with different overall tumor burden. Specifically, we 
divided the 47 KT;H11LSL-Cas9 mice with Lenti-sgTS102/Cre-initiated 
tumors at the 15-week time point into three groups based on the 
total tumor burden in each mouse, namely, the low tumor burden 
group (16 mice), the medium tumor burden group (16 mice), and 
the high tumor burden group (15 mice). We performed calculations 
separately for each group for four metrics (95th percentile tumor 
size, log-normal mean, tumor burden, and tumor number) and evalu-
ated whether these metrics show any correlation with tumor burden.

Quantification of Sex Differences
For each statistic, we used the ratio to quantify the differences 

between female mice and male mice. The ratio was calculated as

Ratio Female

Male

=
X
X

,

where XMale and XFemale are the statistics quantified in male and female 
mice, respectively. When calculating the P values, we respectively 
bootstrapped tumors in male and female mice and calculated the 
proportion of times that the bootstrapped results are not in the same 
direction as the observed score compared with the baseline of 1.

Empirical Estimation of True-Positive Rates
We estimated the power (true-positive rate) for each of the three 

experiments: (i) Lenti-sgTS102/Cre, 15-week experiment; (ii) Lenti-
sgTS85/Cre, 15-week experiment; and (iii) Lenti-sgTS85/Cre, 26-week 
experiment. Understanding the true-positive rate is important for 
understanding the probability of identifying functional tumor sup-
pressor genes. Because we do not have a list for genuine functional 
tumor suppressor genes, we used each sgRNA that generated a sig-
nificant tumor suppressor effect (with nominal P < 0.05) as a proxy 
for true tumor suppressor effects.

For each experiment, whenever we detected a significant effect for 
an sgRNA, we queried whether the other sgRNA targeting that same 
gene also generated a significant tumor suppressive effect. If the 
other sgRNA showed significant tumor suppressor effect, then the 
test was counted as true (T). If the second sgRNA failed to show a sig-
nificant tumor suppressor effect, then the test was false (F). Across all 
sgRNA (including sgRNA#1 and sgRNA#2 for each gene), we tallied 
the number of true and false discoveries. We used additive smooth-
ing by adding a pseudocount of 0.5 to both T and F counts to avoid 
the zero-probability problem in some cases. Therefore, the estimated 
false-negative rate for a gene targeted with a single sgRNA would be

p
F

T F
�

�
�� �� �� �

0 5
0 5 0 5

.
. .

.

The estimated true-positive rate in our experiment was the prob-
ability of failing to identify a functional tumor suppressor gene with 
both of two sgRNAs. Thus, this is

False-negative rate = p2 .

True-positive rate False-negative rate� � � �1 1 2p .

We performed this calculation separately for four metrics: 95th 
percentile, log-normal mean, tumor burden, and tumor number. We 
did not estimate the true-positive rate for the Hill estimator because 
the number of positive findings was too few for robust estimations.

In Vitro Analysis of sgRNA Efficiency
To analyze the relative cutting efficiencies of the sgRNAs, we meas-

ured the insertion and deletion (indel) rates at the target sites in 
Rosa26LSL-Tomato;H11LSL-Cas9 MEFs that were generated from E12.5 
embryos. These MEFs tested negative for Mycoplasma contamination 

Cancer Research. 
on November 10, 2021. © 2021 American Association forcancerdiscovery.aacrjournals.org Downloaded from 

Published OnlineFirst February 19, 2021; DOI: 10.1158/2159-8290.CD-20-1325 

http://cancerdiscovery.aacrjournals.org/


Cai et al.RESEARCH ARTICLE

1770 | CANCER DISCOVERY JUly  2021	 AACRJournals.org

using the MycoAlert Mycoplasma detection kit (Lonza, cat. LT07–418). 
The 105 MEFs were transduced individually with each Lenti-sgTS/Cre 
vector and cultured for 1 week followed by FACS-based isolation of 
Tomato-positive transduced cells. Genomic DNA was extracted from 
sorted cells using the QIAamp DNA Micro Kit (Qiagen 56304) and sub-
jected to PCR-based target enrichment. Two rounds of PCR were per-
formed with Q5 Master Mix (NEB #M0494L). The first round amplified 
each of the 97 sgRNA targeted regions (see Supplementary Table S2 for 
target-enrichment primer sequences). The second round added unique 
dual-indexed Illumina sequencing adaptors to the amplicons.

These libraries were sequenced on an Illumina NextSeq 500 in the 
2 × 150-bp paired-ended configuration (Admera Health Biopharma 
Services). The resulting reads were demultiplexed based on their sample 
indexes. CRISPRessoPooled was used to quantify on-target indel muta-
tions (78). Briefly, pooled reads were initially demultiplexed into files 
according to their specific sgRNA and aligned to the reference sequence 
to identify indel mutations. Substitution events were ignored, and all 
indels that occurred within 10 nucleotides of the predicted target site (3 
nucleotides upstream from the NGG PAM) were counted as on-target 
indel mutations. Indel percent mutated was calculated as the number 
of reads with an on-target indel divided by the total number of reads.

Histology and Immunohistochemistry
Lung lobes were inflated with PBS/4% paraformaldehyde and fixed 

for 24 hours, stored in 70% ethanol, and paraffin-embedded and sec-
tioned. Then, 4 μmol/L-thick sections were used for hematoxylin and 
eosin staining and immunohistochemistry (IHC).

Primary antibodies used for IHC were anti-STAG2 (1:500, LifeSpan  
cat. LS-B11284, RRID:AB_2725802), anti-NKX2.1 (1:250, Abcam cat. 
ab76013, RRID:AB_1310784), anti-Phospho-RPA2 (1:400, Abcam cat.  
ab87277, RRID:AB_1952482), anti-Phospho-Histone H2A.X (1:400, Cell  
Signaling Technology cat. 9718, RRID:AB_2118009), and anti-Phospho-
ERK1/2 (1:400, Cell Signaling Technology cat. 4370, RRID:AB_2315112). 
IHC was performed using the Avidin/Biotin Blocking Kit (Vector Lab-
oratories, SP-2001), Avidin-Biotin Complex Kit (Vector Laboratories, 
PK-4001), and DAB Peroxidase Substrate Kit (Vector Laboratories, 
SK-4100) following the standard protocols. Human lung adenocarcinoma 
tissue microarrays were purchased from US Biomax (HLugA120PG01, 
BC041115e, LC1261, LC706a, NSC155, and NSC157).

Whole-Genome Sequencing and Quantitative RT-PCR
For whole-genome sequencing and qRT-PCR–based gene expres-

sion analysis, samples were generated from Lenti-Cre–initiated 
tumors from three KT and three KT;Stag2flox/flox mice (a subset of 
samples from Fig. 3G). Briefly, neoplastic cells were isolated from 
pooled tumors within two lung lobes of each mouse by FACS for 
Tomatopositive lineage (CD45/CD31/F4–80/Ter119)negative cells (79). 
In total, 60,000 to 100,000 neoplastic cells were collected from each 
mouse. Genomic DNA and total RNA were purified using the Qia-
gen AllPrep DNA/RNA Micro Kit (cat. 80284). Genomic DNA was 
processed with Nextera Flex for karyotyping by low-pass (0.1× cover-
age) whole-genome sequencing. Log2 ratio of reads mapping to each 
genomic locus compared with the average number of reads mapping 
to all other comparable loci was plotted.

For qRT-PCR, total RNA was reverse-transcribed using the Reli-
ance Select cDNA Synthesis Kit with oligo(dT) primers (BioRad cat. 
12012802). Quantitative PCR was performed with PowerUp SYBR 
Green Master Mix (Thermo Fisher Scientific cat. A25776) on an 
Applied Biosystems QuantStudio 3 Real-Time PCR System. PCR 
primers were as follows:

Fos: 5′-TACTACCATTCCCCAGCCGA-3′ and 5′-GCTGTCAC 
CGTGGGGATAAA-3′

Klf2: 5′-GAGCCTATCTTGCCGTCCTT-3′ and 5′-TTGTTTA 
GGTCCTCATCCGTG-3′

Ifnl3: 5′-GTGCAGTTCCCACCTCATCT-3′ and 5′-TGGGAGT 
GAATGTGGCTCAG-3′

Ifnb1: 5′-GTCCTCAACTGCTCTCCACT-3′ and 5′-CATCCAG 
GCGTAGCTGTTGTA-3′

Mx1: 5′-ACGGTGCAGACATACCAGAA-3′ and 5′-CTGTCTC 
CCTCTGATACGGT-3′

Ifi44: 5′-ATGGCAGCAAGAAAAGTGCC-3′ and 5′-AAACTTC 
TGCACACTCGCCT-3′

Irf1: 5′-CCAGAGATTGACAGCCCTCG-3′ and 5′-TGCACAA 
GGAATGGCCTGAA-3′

Gapdh: 5′-TGTGAACGGATTTGGCCGTA-3′ and 5′-ACTGT 
GCCGTTGAATTTGCC-3′

Actb: 5′-GGCTCCTAGCACCATGAAGA-3′ and 5′-GTGTAAA 
ACGCAGCTCAGTAACA-3′

Power Analyses
Power analyses were used to evaluate the ability of the Tuba-seq 

platform to identify functional tumor suppressors across a variety 
of experimental scenarios. The likelihood of detecting a tumor sup-
pressor depends on the strength of its effect, the number of mice 
assayed, and the number of guides in the viral pool. We explored how 
these parameters influence statistical power to detect genes affecting 
tumor growth and initiation through a pair of nonparametric nested 
resampling approaches.

For each simulation that focused on tumor growth, a pseudo-
cohort of mice (n = 5, 10, 20, 50, 100, 200) was sampled with replace-
ment from the cohort of 47 KT;H11LSL-Cas9 mice analyzed 15 weeks 
after tumor initiation, and statistical significance was assessed by 
bootstrap resampling of tumors from the pseudo-cohort. For a given 
viral titer, a larger number of multiplexed vectors result in fewer 
tumors with each sgRNA and a resulting loss of power due to less 
thorough sampling of the underlying distribution of tumor sizes. To 
model this effect, the number of tumors sampled from each mouse 
was scaled by the ratio of the number of sgIDs in the underlying data 
to the simulated number of sgIDs (n = 10, 20, 50, 100, 200, 500). To 
capture differences in power due to effect size, we performed analyses 
for representative strong, moderate, and weak tumor suppressor-tar-
geting sgRNAs (sgNf1#1, sgRb1#1, and sgDot1l#1, respectively). Five 
hundred simulations were performed for each gene, with a minimum 
of 16,000 bootstrap samplings per simulation. In each bootstrap, 
the size of tumor at the 95th percentile with the focal genotype was 
compared with the size of tumor with sgInerts at the 95th percentile, 
and significance in each simulation was assessed by bootstrapped P 
value <0.05 (two-tailed test, Bonferroni corrected for the simulated 
number of pooled sgRNAs).

Effects on tumor initiation are inferred through changes in the 
representation of tumor genotypes in KT;H11LSL-Cas9 mice relative 
to the original proportions of the sgRNAs in the lentiviral vector 
pool. As a result, identifying genes that influence tumor initiation 
requires comparison of KT;H11LSL-Cas9 mice to KT mice, in which 
the relative abundance of genotypes reflects the makeup of the viral 
pool. For each simulation, we therefore sampled a cohort of both 
KT;H11LSL-Cas9 and KT mice (n = 5, 10, 20, 50, 100, 200). For simplicity, 
we maintained the approximate 4:1 ratio of KT;H11LSL-Cas9:KT used 
in this study while ensuring that there was more than 1 KT mouse 
per cohort (e.g., for 50 total mice, we sampled 40 KT;H11LSL-Cas9  
and 10 KT mice). Analogous to the tumor size simulations, we 
modeled the effect of the number of pooled sgRNAs by scaling the 
number of tumors sampled from each mouse by the ratio of the 
number of sgIDs in the underlying data to the simulated number of 
sgIDs (n = 10, 20, 50, 100, 200, 500); the resulting data set was then 
bootstrapped to assess significance. To capture differences in power 
due to effect size, analyses were performed for representative strong, 
moderate, and weak suppressors of tumor initiation (sgPten#2,  
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sgKdm6a#2, and sgNcoa6#1, respectively). Five hundred simulations 
were performed for each gene, with a minimum of 16,000 bootstrap 
samplings per simulation. In each bootstrap, the relative tumor num-
ber (ratio of number of tumors with focal genotype to number of 
sgInert tumors) in KT;H11LSL-Cas9 mice was compared with the relative 
tumor number in KT mice, and significance in each simulation was 
assessed by bootstrapped P value <0.05 (two-tailed test, Bonferroni 
corrected for the simulated number of pooled sgRNAs).

DepMap Data and Filtering
Cancer cell line dependency data (DepMap Public 19Q4) and muta-

tion data (Cancer Cell Line Encyclopedia) were acquired from the Broad 
Institute DepMap Portal (RRID:SCR_017655) (59). Lung adenocarci-
noma cell lines were identified by their Project Achilles identification 
code. For each gene of interest, the cell lines that contained damaging 
mutations within the gene were identified and flagged. Damaging 
mutations were defined as mutations that likely caused loss of gene 
function. Subsequently, dependency scores for each gene of interest 
were exported from both the complete data set of lung adenocarcinoma 
cell lines and data set of cell lines that contains no damaging mutation 
in the gene of interest. Finally, the distribution of dependency scores 
across each gene of interest was plotted using GraphPad Prism 8.
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