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ABSTRACT In the long-term neutral equilibrium, high rates of migration between subpopulations result in
little population differentiation. However, in the short-term, even very abundant migration may not be
enough for subpopulations to equilibrate immediately. In this study, we investigate dynamical patterns of
short-term population differentiation in adapting populations via stochastic and analytical modeling
through time. We characterize a regime in which selection and migration interact to create non-monotonic
patterns of population differentiation over time when migration is weaker than selection, but stronger than
drift. We demonstrate how these patterns can be leveraged to estimate high migration rates using
approximate Bayesian computation. We apply this approach to estimate fast migration in a rapidly adapting
intra-host Simian-HIV population sampled from different anatomical locations. We find differences in estimated
migration rates between different compartments, even though all are above Nem = 1. This work demonstrates
how studying demographic processes on the timescale of selective sweeps illuminates processes too fast to
leave signatures on neutral timescales.
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A population’s structure in physical space can profoundly impact how it
evolves. Structure can speed up or slow down evolution (Barton 1993;
Whitlock 2003; Martens et al. 2011) and cause populations to reach
evolutionary outcomes unlikely or impossible in well-mixed populations
(Wright 1982; McLaren 2016; Bitbol and Schwab 2014), including the
maintenance of genetic diversity (Karlin 1976; Allman and Weissman
2018) and the prevalence of cooperation (Hauert and Doebeli 2004),
clonal interference (Martens and Hallatschek 2011) and speciation
(Coyne 1992). Understanding population structure aids our interpreta-
tion of genetic data sampled from around the globe (Bradburd et al.
2016; Novembre et al. 2008; Berg et al. 2019). For these reasons,
understanding and quantifying population structure has long been
a goal of population biology.

Despite population structure’s importance, classical population
genetics results suggest that even little migration among subpopula-
tions destroys much of the genetic evidence of its existence. For exam-
ple, under neutral evolution, long-term population differentiation is a
function of the product of effective population size (Ne) and migration
rate per individual in the population (m). Specifically, Wright showed
that population differentiation measure FST is equal to 1=ð1þ 4NemÞ
(Wright 1949) in an islandmodel under neutral equilibrium. Therefore
we might expect that when Nem is much smaller than one, local drift
overwhelms migration and FST is substantially elevated above zero
(with up to a maximum value of one under certain conditions) and
populations appear spatially structured. However, when Nem is much
larger than one, migration is effectively much faster than drift, FST
approaches zero and the populations appear completely well-mixed.
Although the island model framework has been criticized (Whitlock
et al. 1999), the result is a population genetics classic and underlies all
population genetics theory (and subsequent applications to data) under
the modeling assumption of panmixia. Examples include detecting
barriers to gene-flow by using patterns of local divergence to deduce
locally reduced levels of genetic exchange.

Importantly, Wright’s equation describes population equilibrium.
In this equilibrium, even very few migrants can mix a large population
if gene flow occurs over timescales of Ne generations. However, a
different picture emerges over shorter timescales (i.e., less than Ne

generations) where ecological processes can have considerable
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non-equilibrium effects. For example, an ecological disturbance in
a population can drastically and immediately perturb allele fre-
quencies in different demes. The duration and magnitude of this
departure from equilibrium will depend on the specifics of the
disturbance, and the rate at which migration returns the popula-
tions to equilibrium.

Non-instantaneous (but still rapid) perturbations in allele frequency
that occur on a timescale much shorter than 1=Nem may also leave
transient patterns in population differentiation. Strong positive selec-
tion represents one such process. Importantly, this holds not only for
heterogeneous selection (which will lead to permanent differentiation
patterns), but also for spatially homogeneous selection, which we will
focus on here.

Most straightforwardly, non-equilibrium population dynamics
present a problem for interpreting population differentiation statistics,
such as FST . Fast processes lead to signals of isolation which can be
misinterpreted as weak migration or local adaptation preventing gene
flow (Whitlock 2003). However, this also presents an opportunity:
with dynamical data it may be possible to track non-equilibrium
behavior of population differentiation over time after a strong per-
turbation to estimate migration.

In this paper, we develop intuitions about subdivided popula-
tions adapting rapidly to a new selective pressure and connected to
each other by migration over short timescales. Although our theory
is more general, we start with a concrete example of how Simian-
HIV evolves drug resistance across multiple tissues. This example
demonstrates how strong selection, abundant mutation and fast
migration can interact to create patterns of substantial yet transient
population differentiation over short, clinically relevant timescales.
We investigate the parameter regime where these forces are jointly
strong and find that when migration is significantly faster than drift
but slower than selection, characteristic, non-monotonic patterns of
population differentiation with respect to time emerge. As a proof of
concept that such dynamical patterns might be leveraged for esti-
mation, we present an approximate Bayesian computation (ABC)
approach that exploits population differentiation over time to
estimate migration rates far above levels possible to determine with
driftingallelesover longtimescales.Finally,wereturn to theSimian-HIV
data and estimate between tissue migration rates unresolvable in the
neutral equilibrium regime.

MATERIALS AND METHODS

Simulation
Togain intuition on the dynamics of populations under strong selection
and migration, we performed stochastic simulations. Two populations
of equal size N were instantiated with no standing genetic variation,
under the assumption that beneficial mutations are costly before the
change in environment.

Eachgeneration, fourstepsare simulated ineachpopulation toadjust
the counts of the alleles in populations A and B respectively, �A and �B:

Mutation: Each population draws a Poisson distributed number of
mutations (l ¼ N ·m, where m ¼ 1025 (Abram et al. 2010)) which
land on wildtype backgrounds and each create new, fully identified
genetic lineages. All beneficial mutations confer identical fitness
benefit 1þ s relative to wildtype.

Selection: Counts of different alleles in each population (�A and �B) are
normalized into frequencies fA and fB, respectively. The frequency of
each mutational lineage is deterministically adjusted based on its

fitness benefit: the frequency of each non-WT allele is multiplied by
1þ s. Then, all frequencies are normalized so the sum of all alleles
within each population equals 1.

Migration: Allele frequencies are deterministically adjusted based on
the migration rate, m:

f 9A ¼ fAð12mÞ þ fBm

f 9B ¼ fBð12mÞ þ fAm:

Stochastic sampling: N alleles each are sampled from f 9A and f 9B with
replacement to produce counts for the next generation, �A9 and �B9.

Approximate Bayesian computation
We employed approximate Bayesian computation (ABC) to esti-
mate model parameters from simulated and real data (see below).
We performed a two-step approximate Bayesian computation pro-
cedure in which we simulated 3 · 106 forward trajectories with
uniform log10 priors where m 2 ð1025; 5 · 1021Þ, s 2 ð1021; 102Þ,
and Nm 2 ð1021; 101Þ. We restricted our Nm prior to values
expected to produce mutations that would then have time to sweep
in the population within the relevant time frame of 100 generations.

We used rejection sampling, which accepts a certain percentage of
trials (given by the tolerance) that minimize the Euclidean distance
between the observed summary statistics and those summary statistics
generated by the prior as implemented in the R package ‘abc’ (Csilléry
et al. 2012). The parameter combinations that result in the lowest
distances form the posterior. We first perform ABC to estimate the
posteriors for Nm and s, using targeted summary statistics as discussed
in Aeschbacher et al. (2012).

For Nm we use the best fit u under Ewens’ Sampling Formula for
when the populations are combined at each time point. Note, combin-
ing two population allele frequencies with limited migration overesti-
mates the value of u (i.e., increases diversity relative to a single
population), but this does not affect our procedure because the best
fit u is used only as a summary statistic.

To estimate s, we fit the observed frequency of the derived allele at
the sampled time points to a logistic curve with y-intercept of 1025

that minimized mean squared error from the observed data. In the
cases of ties, we used the shallowest slope that could explain the data
equally well.

From our first fit ABC, we get posteriors over Nm and s. We then
take the range of values within the 95% posterior for these two
parameters and use those as a flat prior for a second fit (see Figure
S12). For our second fit ABC, we use four summary statistics at each
time point: FST , G9ST , the absolute value of the difference in hetero-
zygosities between the two subpopulations, and the number of vari-
ants shared at any frequency. For a schematic illustration of the
two-step process, see Figure S12. This two-step procedure drastically
improved our estimates for m as compared to a one-step procedure
(data not shown).

Computation of summary statistics
Compartments A and Bwere sampled with allele counts for the l alleles
at the beneficial locus �A ¼ ða1; a2; . . . alÞ and �B ¼ ðb1; b2; . . . blÞ. The
total number of alleles sampled in each population was

P
lðaiÞ ¼ nA

and
P

lðbiÞ ¼ nB with nA þ nB ¼ n. We use the GST definition of FST ,
based on the difference between within- and between-compartment
heterozygosities:
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FST ¼ hb 2 hw
hb

where hb is the average within-compartment heterozygosity
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and hw is the pooled-compartment heterozygosity
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G9ST is a renormalized FST based on the maximal value it can reach
accounting for the most frequent allele in the population

G9ST ¼ FST

Q
�
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n

��
where Qðf Þ is given in equations 15 and 16 of Jakobsson et al. (2013).

The difference in heterozygosities is computed as
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Model evaluation
We determine whether the posteriors from ABC are providing useful
estimates by comparing the posteriors to the truemodel parameter. The
most useful posteriors will have small variance and be centered around
the true values. However, using either one of these metrics will lead to
misidentification. For example, if we evaluated a posterior using the
proportionof the time the 95%posterior interval contains the true value,
a completely uniform estimate across the posterior should contain the
true value 100% of the time while offering no information about
the estimated parameter. Alternatively, if we evaluated a posterior using
the size of the 95% interval, a very narrow posterior far away from the
true value would score highly but provide misleading information. To
balance confidence and accuracy, we use the mean-squared error
computed in log space (as our posteriors are uniform on a log-scale)
to find the average difference between each of n points (si) in our
estimated posterior and our true test parameter x.

logMSEðs; xÞ ¼ 1
n

Xn
i¼1

�
log10ðsiÞ2log10ðxÞ

�2

Simian-HIV data
To explore a structured populationwith strong selection andmigration,
we analyzemacaqueT98133 fromFeder et al. (2017). Briefly, amacaque
was infected with RT-SHIVmne027, a simian immunodeficiency virus
with an HIV-1 reverse transcriptase region and treated with FTC, a
reverse transcriptase inhibitor. Drug resistancemutations to FTC occur
within the reverse transcriptase region. The viral population was given
12 weeks to establish within the host before treatment began. Viral
samples were collected from the gut, lymph node and blood plasma
at 1, 3, 8 and 14 weeks after the onset of treatment. The authors per-
formed single genome sequencing of the reverse transcriptase region,

resulting in 800 bp regions containing relevant drug resistancemutations
and complete linkage information and have approximately 30 sequences
per time point and location.

Generations inHIV/SHIV are approximately 24 hr, so we translated
weeks 1, 3, 8 and 14 to generations 7, 21, 56 and 98, whichwe rounded to
generations 5, 20, 50 and 100.

We called derived haplotypes as unique if they contained a drug
resistance mutation (M184V/I) and any other mutations at the initial
time point at which drug resistance was observed (approximately
generation 20) in at least c ¼ 2 copies. Note, we replot Figures 1 and
7 with choices of c ¼ 1 and c ¼ 5 in Figures S8, S9, S10 and S11. 95%
posteriors across the choices of c are also listed in Table S1. We ex-
cluded haplotypes appearing for the first time after generation 20, to
avoid mutations occurring on the backgrounds of existing lineages,
which our model does not consider. These later time point haplotypes
were clustered back to the most common early time point haplotype
with the minimal mutational distance. For example, if generation
20 contained three haplotypes with the mutations A, B and C: A,
A+B and A+C, and the haplotype A+B+D was observed at generation
50, it was counted as haplotype A+B.

No additional known drug resistance mutations appeared after
generation 20, although positive selection may still influence allele
frequency trajectories.

When we compute FST pairwise between anatomical compartments
(as in Figure 1D), we treat each haplotype as equally different from
every other haplotype, despite some sharing more alleles than others.
For example, M184I and M184V+N255N+D177N and WT are all
equally different from each other. We do this in line with our single
mutation simulation model, in which all haplotypes are equally differ-
ent from each other. Computing differentiation statistics that take into
account conservation does not qualitatively change the patterns, and
this question is considered in much more detail in Feder et al. (2017).
This convention is also used in the computation of all other summary
statistics.

Data availability
All code to reproduce the analyses can be found at https://github.com/
affeder/fst_dynamics, and in the supplemental material. Sequences can
be found in Genbank under accession numbers MF029756-MF030224
(plasma viral RNA) and MF032109-MF033066 (tissue viral RNA) for
macaque T98133. Supplemental material available at FigShare: https://
doi.org/10.25387/g3.9738875.

RESULTS AND DISCUSSION

A motivating example using Simian-HIV drug
resistance evolution
Viruses infecting a multicellular host may be subject to both strong
selection (via drugs and the immune system) and also fast migration
between anatomical compartments (via the circulatory and/or lym-
phatic systems).

Aprevious study found that amongSimian-HIVwithindrug-treated
macaques, multiple drug resistance mutations spread simultaneously
across anatomical compartments with weak but significant evidence of
population structure dynamically changingover time (Feder et al.2017).
In Figure 1, we reproduce a simplified picture of this evolutionary
process in one Simian-HIV-infected macaque (T98133) across three
well-sampled tissues (lymph node, gut and plasma) at four time points
(1, 3, 8 and 14 weeks after the onset of selection via the drug FTC).
Approximately 30 single-genome sequences of the reverse transcriptase
region of the pol gene are taken per time point, per sampling location.
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Each population has several different variants of drug resistant
viruses spreading simultaneously which can be seen both through
different encodings of drug resistant types (i.e., M184V vs. M184I)

and also through linkage to different hitchhiking mutations (M184V
vs.M184V +N255N +D177N) (Figure 1). All colors shown in Figure 1
are resistant. Multiple spreading mutations suggest that the population
mutation rate (Nm) is sufficiently large so as to produce soft selective
sweeps (Hermisson and Pennings 2005). These mutations quickly dis-
place wildtype virus across tissues almost entirely, confirming that
selection to drug resistance is strong. Finally, migration is sufficiently
fast to spread the same mutations around to different compartments.
While some of these apparently spreading drug resistancemutants may
be recurrent mutations, several are linked tomultiple putatively neutral
mutations, suggesting that they arose once and then moved between
anatomical compartments. However, migration is not so fast that each
compartment looks equivalent, as demonstrated by statistically signifi-
cant elevated pairwise FST between compartments at some of the points
during the experiment (Figure 1D) (see Materials and Methods for
details, and Feder et al. (2017) for a much more extensive descrip-
tion of population differentiation in this data). Notably, we observe
non-monotonic patterns of FST with respect to time, suggesting
that some pairs of populations differentiate as they fix beneficial
mutations, then re-equilibrate over time (plasma v. lymph node
and lymph node v. gut).

These patterns suggest qualitatively that the population genetic
forces of mutation, migration and selection are all jointly strong.
However, it remains quantitatively unclear how strong they are relative
to each other. We therefore explore the dynamics of populations over
short periods of time (including non-monotonicity of FST relative to
time) to better understand quantitatively how these population genetic
parameters interact. We use many of the sampling attributes from the
Simian-HIV example (�100 generations, sampling depth of �30 ge-
nomes, �4 time points) as our reference in exploring this parameter
space.

Although we use these data as a motivating example, many ecolog-
ically important processes feature rapidly adapting and dynamically
interconnected populations.

Building intuition about the interaction between strong
selection and migration
Wenext explorehow rapid adaptation in two subpopulations connected
with migration can lead to signals of population differentiation over
time.

Figure 2 shows two schematic scenarios throughwhich a population
divided into two subpopulations can fix beneficial variants. In both
instances, a beneficial mutation will enter one population and begin
to spread. However, the paths differ according to whether the first
beneficial allele in the second subpopulation arrives through de novo
mutation or via migration. Understanding differences in static signa-
tures resulting from these two scenarios (in addition to selection from
shared standing genetic variation between the two populations) are
considered in Lee and Coop (2017).

In a “migrant-derived sweep” (Figure 2A), a beneficial mutation
sweeps in one subpopulation and then spreads to the second sub-
population via migration. The mutation then sweeps in the second
subpopulation. Population differentiation increases due to different
frequencies of the same allele (or alleles) across subpopulations, and
then disappears when the sweep completes in the second subpopula-
tion. This case, which has been described previously in Slatkin and
Wiehe (1998), Kim and Maruki (2011) and Bierne (2010), is more
likely when the influx of beneficial mutations is limited (i.e., Nm low).

When the population mutation rate is high, another path is also
possible (Figure 2B). If many beneficial mutations enter the population
each generation, then each subpopulation may produce its own beneficial

Figure 1 Dynamics of drug resistance fixation across space and time
in a treated Simian-HIV population. The top three rows shows
diagrams of drug resistant haplotypes spreading in different sampling
locations over time sampled at generations 7, 21, 49 and 98 after the
onset of selection via the drug FTC in the gut, lymph node and blood
plasma. Each color represents a distinct lineage separated by at least
one mutation. The bottom-most panel plots pairwise FST between
pairs of sampling locations.
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variant (Figure 2B1.) which begins to rise in frequency locally (Figure
2B2). Population differentiation (as measured by FST ) increases due to
sweeps of different alleles concurrently. However, over time, migra-
tion equilibrates the allele frequencies across the two populations
(Figure 2B3), and FST returns to long-term equilibrium levels. As
we will explore later, the initial increase in differentiation and the rate
of equilibration can be informative of the speed of migration.

The shape of the FST trajectory over time differs substantially be-
tween the two cases. In locally-derived sweeps, selective sweeps drive
the initial increase of FST and migration erodes population differenti-
ation over time. In the case of the migrant-derived sweeps, selective
sweeps drive both the increase and decrease in FST , because FST de-
creases as the sweep completes in the second subpopulation (See Figure
2A). Migrant-derived sweeps are therefore substantially less informa-
tive than locally-derived sweeps about the rate of migration between
two populations, because both the increase and decrease of FST are on
the timescale of selection.

Whether a sweepwill be locally- ormigrant-derived is closely related
to the probability of hard or soft sweeps (see Pennings and Hermisson
(2006)), and a full exploration of the conditions is left to a future study.
Because Kim and Maruki (2011) describe migrant-derived sweep be-
havior in detail, we focus on locally-derived sweep behavior, although
both types of sweeps occur in the model described below. Further, we
believe a model of locally-derived beneficial mutations represents the
more probable description of the dynamics in our motivating example
of SHIV.

Model: We consider a two-population island model with mutation,
migration and selection. We model two haploid populations of size N
with non-overlapping generations. Each population begins fixed with
an identical wildtype allele (standing genetic variation is discussed
below). Each generation,mutation introduces new beneficial mutations
at a rateNm at a single locus. Throughout the text, we focus on values of
Nm where mutations are readily available to the population (Nm$ 0:1,
and often Nm ¼ 1. Beneficial mutations possess an enhanced survival
likelihood relative to wildtype (wWT ¼ 1, wb ¼ 1þ s, s. 0, see

Materials and Methods for full details). All beneficial mutations are
neutral with respect to each other, and no individual can carry multiple
mutations. This describes, for example, loss of function mutations
where subsequent mutations in the same pathway have no effect and
follows the modeling assumptions of Ralph and Coop (2010). Each
generation, a proportion of the population m migrates symmetrically
between the two subpopulations. Therefore, Nm ¼ M individuals mi-
grate in each population per generation.

We investigate first the conditions under which the subpopulations
will differentiate, as measured by the population differentiation statistic
FST .

Figure 3 shows a collection of stochastic simulations generated with
Nm ¼ 1. Each colored region represents the spread of an allele in the
two large populations experiencing strong positive selection (N ¼ 105,
s ¼ 1). Red alleles originate in populationA and blue alleles originate in
population B. When the migration rate is low, each population fixes
independently its own set of alleles (seeM ¼ 1021 throughM ¼ 100).
When the migration rate is high, the populations are indistinguishable
and represent a mix of alleles originating in both subpopulations (i.e.,
M ¼ 104). Among intermediate migration rates, however, more com-
plicated dynamics arise. The population differentiation statistic FST
initially rapidly increases and then slowly decreases. The non-mono-
tonicity of these trajectories in time can be understood by considering
three relevant timescales: 1) the relative forces of selection and migra-
tion during the sweep, 2) the relative forces of migration and drift
following fixation, and 3) the relative timescales of migration and the
sampling.

The initial dynamics are determined by comparing the forces of
migration and selection during the sweep. If selection overwhelms
migration (s � m), each population at least partially fixes its own
variant and FST increases rapidly (here,M# 103). Alleles spread within
subpopulations faster than migration equilibrates these alleles across
subpopulations. However, if migration is too fast compared to selec-
tion, little differentiation occurs at any point in the sweep (M ¼ 104).

The subsequent decrease in FST depends on the relative timescales of
migration and both genetic drift and sampling post-sweep. In our

Figure 2 Schematic of allele frequencies
and FST across populations adapting in par-
allel. A. In a migrant-derived sweep, one
population generates a beneficial allele via
mutation significantly before the other pop-
ulation. The allele sweeps locally in its
population of origin, and arrives in the alter-
native population due to migration before
this population can fix its own variant. Here,
the increase in FST is due to divergent fre-
quencies of the wildtype and derived allele,
with the alternative population having a high
frequency of the wildtype allele while the
focal subpopulation has a high frequency of
the derived allele. Migrant-derived sweeps
have a short, symmetric spike in FST . B. In a
locally-derived sweep, each population fixes
its own variant (shown in red and blue) which
increases in frequency locally. Over time,
migration equilibrates the allele frequencies
among the two populations. The increase in
FST is due to divergent frequencies among dif-
ferent derived alleles across populations, and
FST has a long-tailed, asymmetric trajectory
over time.
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model, all alleles share identical selective benefit and no secondary
mutations occur on the background of the first mutation (although
the first mutation can happen on the wildtype background multiple
times). Therefore, after loss of the wildtype allele, all alleles are
selectively neutral with respect to each other, and solely migration
and drift govern the changes in their frequencies. FST between the
two populations will ultimately decrease to near the equilibrium
predicted by Wright (FST ¼ 1=ð1þ 4NmÞ), but the rate of that
equilibration depends on the migration. If migration is sufficiently
fast compared to drift (i.e.,m � 1=Ne), FST will decrease faster than
drift will move alleles within subpopulations. However, if migra-
tion is comparable to drift, the process will take significantly longer
(on the order of Ne generations). Whether this decrease is observed
depends on the time frame of population sampling, although this
paper will be restricted to relatively short sampling periods (i.e.,
100 generations).

These observations suggest that in adapting populations, distinc-
tive patterns emerge depending on the relative values of migration
(m), selection (s), genetic drift (1=Ne) and the sampling timescale.
By examining these patterns over short timescales in genetic data,
we may be able to estimate the values of s, m and N relative to each
other in natural populations. This estimation will be a primary goal
of the paper.

An analog of Figure 3 with a lower population mutation rate
(Nm ¼ 0:5) is shown in Figure S1, and displays example patterns of
FST in parameter regimes where migrant-derived sweeps are prev-
alent. If a similar picture is produced using neutral alleles, only the
lowest migration rates produce differentiable patterns and elevated

FST (Figure S2), and it takes much longer for this differentiation to
accrue (i.e., on the order of Ne generations).

The dynamic patterns of FST under strong selection and migration
suggest sweeping alleles across populations can provide insight into
migration that occurs over much faster timescales than are relevant
under neutrality. As in the neutral case, when migration is too slow
compared to the rate of change in the population we can only say that
migration rate belongs to a particular, slow regime. We encounter a
similar situation when migration is too fast compared to selection.
However, in the intermediate cases when selection and migration are
on sufficiently similar timescales, more precise estimation appears pos-
sible. By observing alleles moving at different speeds due to different
strengths of selection, we can move the boundaries of the bins and
estimate more precisely migration at different speeds.

This example also illustrates several additional practical points. 1)
Because dynamical patterns in FST are apparent when sweeping alleles
are captured at multiple points in their trajectories, this approach de-
pends on the availability of time series data. 2) Because differences in
the allele frequenciesmust bemeasurably different, sampling depth will
affect whether or not these signatures are present.

Before dynamical patterns of population differentiation can be used
to performparameter estimation in a stochasticmodel, we first examine
patterns of FST under strong migration and selection in a deterministic
setting. Specifically, we will explore analytically the parameter regimes
that create transient and long-termpopulation differentiation driven by
locally-derived sweeps. We will see later that the population parameter
regimes that create non-monotonic signatures of population dif-
ferentiation with respect to time correspond to those in which we can

Figure 3 Patterns of allele frequencies and FST across populations adapting in parallel. Beneficial alleles originating in populations A and B
(colored red and blue respectively) increase in frequency over the wildtype allele (in gray) creating patterns of differentiation in FST shown on the
bottom row. The patterns of differentiation are dependent on the migration rate connecting the two populations (M ¼ Nm shown in columns,
s ¼ 1;N ¼ 105;m varies as listed in column header.)
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successfully perform parameter estimation using approximate Bayes-
ian computation.

Analytical approximation: To study locally-derived sweeps, we con-
sider the case inwhicheachof twopopulationshasa single copyof a local
allele at the same locus (i.e., frequency   f ð0Þ ¼ 1=N) simultaneously.
We ignore all subsequent mutation. Because the populations are sym-
metric, without loss of generality, we can consider the frequencies of a
single subpopulation and determine what are the relative frequencies of
the local and non-local allele at a time t (flðtÞ and fnlðtÞ, respectively).
We consider the total number of derived alleles f ðtÞ ¼ fnlðtÞ þ flðtÞ
and assume that f ðtÞ grows logistically.

f ðtÞ ¼ est

est þ 1=f ð0Þ2 1
:

A differential equation describes the change in frequency of the non-
local allele, fnlðtÞ:

f 9nlðtÞ ¼ m
�
flðtÞ2 fnlðtÞ

�þ sfnlðtÞð12 f ðtÞÞ:

We define FðtÞ ¼ fnlðtÞ=f ðtÞ, the frequency of the non-local allele
among all derived alleles. We solve to find

FðtÞ ¼ 0:5þ ðFð0Þ2 0:5Þe22mt : (1)

Closed form descriptions of fnlðtÞ and flðtÞ are given as follows:

fnlðtÞ ¼ f ðtÞFðtÞ
flðtÞ ¼ f ðtÞð12 FðtÞÞ: (2)

We can investigate patterns of population differentiation using theGST

definition of FST , representing the scaled relationship between intra-
and inter-population heterozygosity (see Materials and Methods). If
we assume that each population starts with its own allele at arbitrarily
low frequency (i.e., flð0Þ ¼ 1=N and fnlð0Þ ¼ 0), we can describe the
dynamics of the two alleles over time via via the following equation
(see supplemental text for more explicit derivation):

FSTðtÞ ¼ ð122FðtÞÞ2   f ðtÞ
22 2  f ðtÞFðtÞð12 FðtÞÞ2 f ðtÞ: (3)

The predicted FST trajectories match well the trajectories generated by
simulations showing locally-derived sweeps (Figure 4). Because mul-
tiple circulating alleles constrain the possible values of FST (Jakobsson
et al. 2013), all alleles originating from the same population from
simulation are collapsed into a single allele so that the FST magnitudes
are also comparable.

This equation also allows us to quantify the generation at which FST
will be maximized between the two subpopulations (tmax), and its
maximum value (FSTðtmaxÞÞ:

tmax ¼ 1
s
log
�� s

m
2 4
�
ðN2 1Þ

�
(4)

and

FST ðtmaxÞ ¼
2
�
s
m24

�124m
s�

s
m24

�124m
s þ s

mðN21Þ4ms
: (5)

From these equations, we can determine that the waiting time until
the population reaches maximal FST is dominated by a term in-
versely proportional to s. However, the maximal FST at this point
is determined by the ratio of s=m. The strength of selection con-
trols largely when the FST spike will happen, but the ratio of s=m
governs the magnitude of the signal, with stronger selection rel-
ative to migration creating more pronounced spikes as a non-
linear function of that proportion. Note that this equation is
undefined when selection is not sufficiently stronger than migra-
tion (s, 4m).

Below we will also use these equations to quantify the parameter
regimes in which FST will show non-monotonic patterns with respect to
time by evaluating when FSTðtmaxÞ will be elevated sufficiently for it to
be observed at a given depth, and also when FST will decline appreciably
over a relevant timescale by evaluating equation 3 some number of
generations after tmax .

Note that because this analytical framework assumes the si-
multaneous appearance of low frequency resistance mutations across
populations, it only describes the dynamics seen when populations are
non-mutation limited (i.e., Nm large). Some of the discrepancies be-
tween the predicted and simulated trajectories stem from violation of
this symmetry in simulations.

Figure 4 Simulated patterns of FST over time
share features with analytical predictions. For-
ward stochastic simulations of FST between
two populations undergoing parallel selection
of strength s and connected by M variants per
generation for a given set of parameters are
shown in light, solid lines (100 replicates). All
alleles originating in a single subpopulation are
collapsed together for the purpose of computing
FST . The median trajectory is shown in a dark solid
line. Analytical predictions (equation 3) are shown
in a dashed line. (Nm ¼ 1).
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Patterns of population differentiation can be used for
parameter estimation using approximate
Bayesian computation
To translate these expected patterns into parameter estimates, we
employ approximate Bayesian computation (ABC) (Rubin 1984;
Beaumont et al. 2002) because exact likelihood formulations cannot
be worked out under complex demographic scenarios. This provides a
framework for interpreting allele frequency trajectories in the context of
underlying parameter regimes. Briefly, ABC works through simulating
data under parameters drawn from a prior and then comparing the
simulated data to observed data. The parameter combinations that
generate simulated data most similar to the observed data form poste-
rior distributions. Note, we do not intend this as a claim for the best way
to estimate migration using selected alleles, but as a demonstration of
extractable signal.

We begin by demonstrating that migration information can be
estimated from observed allele frequencies generated from our stochas-
tic simulations using allele frequency differences in these connected
populationsover time.Recently,manymethodshavebuiltuparound the
ideaof estimating selection strength fromallele frequencydata ina single
population (Bollback et al. 2008); Feder et al. 2014; Terhorst et al. 2015;
Schraiber et al. 2016; Iranmehr et al. 2017). By leveraging this infor-
mation across multiple populations, we can learn about selection and
migration simultaneously. In particular, we imagine that we have allele
frequency samples of n genomes before and after a sweep, and at some
time point T generations later (here: n ¼ 100, T ¼ 30). These time
points are chosen to match the Simian-HIV motivating example, but
we provide amuchmore thorough analysis of how sampling time affects
this approach below.

Because we are tracking the frequencies of many alleles across
multiple time points, we use summary statistics to characterize the
observed dynamics. As noted in Aeschbacher et al. (2012), the accuracy
of ABC can be boosted when summary statistics are optimized sepa-
rately for estimating different parameters, especially when there are
only weak interactions between pairs of parameters. To jointly estimate
s, N and m, we selected summary statistics that were useful for fitting
the migration rate separately from s andN. We first performed a single
round of ABC to estimate posteriors over s and N with these summa-
ries. Then, we performed a second round of ABC to estimate m while
restricting the priors over s andN to the posteriors from the first round
fit (see Materials and Methods). We also fit s and N separately from
each other and did not find a significant improvement in method
performance (data not shown). To summarize information about N,
we found the most likely u using Ewens’ Sampling Formula for the
combined allele frequencies at each sampled time point pooled across
the populations. To summarize information about s, we assumed ben-
eficial allele frequency 1025 for a beneficial mutation at time 0 (which is
a conservatively low frequency for intra-host standing genetic variation
(Zanini et al. 2017; Theys et al. 2018)) and determined the parameter s
producing the logistic growth curve that minimized mean squared
error from the observed data. To computeM, we used four parameters
at each time point: FST , G9ST , the difference in heterozygosities between
the two subpopulations and the number of shared alleles at any fre-
quency. Reasoning and further details concerning these summary sta-
tistics can be found in the Materials and Methods.

Migration estimation depends on s: To validate our ABC approach,
we first simulated data under known parameters and then used our
approach to re-estimate migration rates. We ran 200 forward simula-
tions for each set of parameters and examined the resulting 95%
posteriors overm to quantify the proportion of posteriors that contain

the true m (Figure 5). See Materials and Methods for full simulation
details. We also quantify the probability that the posteriors contain
incorrect values ofm at varying distances away from the truth. We find
the 95% posteriors contain the truemigration rate with high probability
(Figure 5, indicated by the clustering of red around the x ¼ y line) and
do not contain migration rates far away from the truth (indicated by off
x ¼ y).

Thereare instructiveexceptions.First,whenthemigrationrate is low,
we have little power to distinguish values of m in this range. Low m
results in near total differentiation between the two subpopulations
(see Figure 3,M, 1000), so it is therefore unsurprising that we cannot
predict the migration rate beyond bounding it. Similarly, this method
cannot differentiate among very high migration rates. In this instance,
the populations are entirely panmictic, and there is little signal to un-
cover (See Figure 3, M ¼ 104). Although within these regimes where
allele frequencies from the two subpopulations appear panmictic or
independent we have no ability to estimate migration rates specifically,
this does allow us to bound fast migration rates much more precisely
than is possible with neutral alleles. For example, if we were to observe
identical equilibrium neutral allele frequencies among two subpopula-
tions, wemight conclude thatM. 1. However, if we observed identical
allele frequencies over time subject to strong selection, this would sug-
gest that M$ 104.

The boundaries at which we enter these regimes of independence
and panmixia depend on the strength of selection. We see that
s ¼ 0:3;M ¼ 1000 results in apparent panmixia in many instances.
However, when s ¼ 3, our method still accurately estimates migration
rates when M ¼ 1000 (Figure 5). We test this more directly by com-
puting the log MSE between the posteriors and the true m for a wide
variety of selection strengths and migration rates (Figure 6A, see Ma-
terials and Methods for a detailed description of the log MSE). Con-
sistent with the analysis in Figure 5, when migration is too high or too
low relative to selection, the posterior is far from the truth. (Note, the
relatively low MSE between the truth and the posterior among high
values ofm is driven by the limits on the prior, which is bounded above
by m ¼ 0:5). However, the upper boundary at which the performance
deteriorates increases with selection strength. Put another way, as se-
lection strength increases, so do the rates of m that can be accurately
estimated.

These results are predicted by our analytical model of locally-
derived sweeps. The parameter combinations that show a notice-
able non-monotonic pattern in FST over 100 generations (i.e., FST
reaches a value greater than or equal to 0.15 followed by a decrease
in FST . 0:15 within 30 generations of tmax) are similar to those that
can be estimated using the ABC approach (Figure 6B). This sug-
gests that a primary signal identified by our ABC approach is a
non-monotonic pattern of FST over time. However, because the
performance of the ABC approach deteriorates as other summary
statistics are removed (data not shown), this is likely just one of
several important signals for estimation.

Practical considerations in estimating m from data
The interaction between migration and selection is not the only factor
that impacts our estimation. We find that the performance improves
when the sampling is deeper, reflecting more accurate estimation of
allele frequency differences (Figure S3). We also find that the choice of
sampling time points matters for the estimation of specific migration
rates. We assume that samples are taken before and after a sweep, and
then at an additional time point T generations later. When T is small,
performance is worse, presumably because migration has had less time
to influence allele frequencies (Figure S4). When adding a fourth time
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point at generation 100, the method is fairly insensitive to the place-
ment of the third time point (Figure S5).

We also find that specific parameters of the ABC are important,
namely the tolerance of accepted matches. We find that as toler-
ance becomes more stringent, the posteriors become narrower
(Figure S6A). However, as the resulting posterior decreases in size
due to lower tolerance, there is a decreased probability of capturing
the true value in the posterior (Figure S6B). Nevertheless, decreasing
the tolerance improves thematchingofposteriors and the truth (Figure
S6C), and we therefore choose a low tolerance (tol ¼ 0:001) for our
analyses.

Finally, we explore how true asymmetries in the underlying model
affect ABC performance in estimating migration rates (Figure S7).
Similar to analyses above, we simulate adaptation to strong selection
(NA ¼ 105; sA ¼ 1) across two subpopulations under a variety of mi-
gration rates, but now we allow the second subpopulation to differ in
migration rate (mAB ¼ pmBA; p 2 ð0:1; 0:5; 1Þ, Fig S7A-C), population
size (NA ¼ pNB; p 2 ð0:1; 0:5; 1Þ, Fig S7D-F) or selection strength
(sA ¼ psB; p 2 ð0:1; 0:5; 1Þ; Fig S7G-I). We estimate migration rates
assuming no asymmetries.

Our model is relatively robust to differences among migration rates
between the two subpopulations (mAB 6¼ mBA). WhenmAB #mBA, the
estimatedmigration rate is intermediate to the two rates, but has similar
variance to the symmetric case (Figure S7A-C).

Differences in population size between the two subpopulations
increase the variance of the posteriors, but do not appear to bias the
estimation of migration rates (Figure S7D-F).

Differences amongselectioncoefficientsbetween the subpopulations
createmore complicated effects.When selection inone subpopulation is
much smaller than the other (but selecting for the same variants), we are
unable toestimatemigrationbecause the sweepdoesnot completeacross
both compartments, and our estimation procedure conditions on a near
full sweep (Figure S7G). When migration is sufficiently fast, migration
from the subpopulation experiencing stronger selection contributes
substantially to the sweep in the subpopulation experiencing weaker
selection. As a result, when the populations are sampled, they appear
more similar to each other than if both populations are increasing alleles
due to strong, semi-independent selection. As a result, migration rates
are systematically biasedupwards, but the effect is small (FigureS7G-H).
Inaddition,because the selection strength is lower inone subpopulation,
the method has less resolution to differentiate among intermediate
migration rates, as we observed in the investigation above. This also
leads to an increase in variance among the estimated rates. We discuss
how this compares to the case in which selection selects for different
variants across compartments in the discussion.

Application to real data: In the previous section, we have established
that we can estimate population genetic parameters using a multi-step
ABC method. In this section, we apply this method to real data that
matches the structure of ourABCmethod (Feder et al. 2017) in order to
estimate viral migration rates between pairs of different organs (blood
plasma, lymph nodes, gut) of a Simian-HIV infected pigtailed macaque
sampled over time (Figure 1). The importance of estimating such rates
has been previously investigated (although in the absence of selection)

Figure 5 ABC procedure re-estimates
true M values in simulated data.
200 simulations are run for each true
value of m on the x-axis and 200 pos-
teriors are produced. We plot the pro-
portion of 95% posteriors for a given
true m (shown on the x-axis) that in-
clude the various values of estimated
m (shown on the y-axis). Values that
are more red indicate that the poste-
riors successfully capture the test ‘Es-
timatedm’ value on the y-axis whereas
blue values indicate that few poste-
riors include the y-axis value. Black

horizontal lines indicate where the true value matches the y-axis ‘Estimated m.’ Simulations are generated across a gradient of values for m
and s (m 2 ð1024 21021Þ; s ¼ ð0:3;1;3Þ, sampling at generations (5, T = fixation, T þ 30; 100Þ;N ¼ 105Þ.

Figure 6 Better estimation of higher migration
rates among simulations with higher selection
strength. For a fixed N, higher s values result in
lower log MSEs (indicating successful estima-
tion) for higher values of M. Each tile represents
the median log-MSE for 100 trials computed
with a given m and s. (N ¼ 105, sampling at
generations 2, T = fixation, T þ 30). B. Predic-
tions of the dynamics of FST over 100 genera-
tions under a variety of parameters for s and m.
Each square in A. corresponds to the modeled
dynamics in B. The parameter combinations pre-
dicted to lead to a 0.15 unit decrease in FST after
30 generations (red) correspond to the parame-
ter regimes where migration can be estimated
with low MSE. The area circumscribed in black
highlights this region in both A and B.
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Ewing and Rodrigo (2007). The allele frequencies shown in Figure 1 are
simplified trajectories of the full data tomake itmore comparable to our
model. For full data processing choices (and fits when those choices are
modified), see the Materials and Methods section.

Wefind that estimates ofm between the plasma and lymph node are
very high: The distribution is flat above 1% of the population migrating
each generation (Figure 7, Table 1). The flatness of this distribution
suggests that these subpopulations exist in the regime in which migra-
tion moves alleles faster than selection, and we find little differentiation
that cannot be explained by sampling error (consistent with findings of
panmixia in Feder et al. (2017)). Although a more specific migration
rate cannot be estimated, posteriors suggest a migration rate above
m$ 0:001.

However, the migration rate between the plasma and the gut is
unimodal centered around 0.05% of the population migrating each
generation (Figure 7, Table 1) - half of the low end of the posterior
between the lymph node and the plasma, yet higher than what would
produce elevated FST in drifting alleles at equilibrium (although
Nem ¼ 1 falls within the 95% posterior). These differences between
the connectivity between the plasma and gut or lymph node are bio-
logically consistent in their ordering, as wemight expect the circulatory
system to be more connected to the lymphatic system than a mucosal
tissue.

Weestimatesimilar selectionstrengthandpopulationmutationrates
across subpopulation comparisons (see Table 1). Across both compar-
isons, the selection strength is extremely strong (s � 1:24 - 3), which is
necessary to explain the almost complete sweeps observed in the first
20 generations. The population mutation rate is sufficiently high that
soft sweeps are likely (Hermisson and Pennings 2017). That we see no
significant differences between the estimated population sizes makes
intuitive sense given the consistency of sweep timing and diversity
across the three populations. However, it is also possible that the size
estimation across the pairs of compartments is driven by the size of the
largest subpopulation, resulting in comparisons that are less dependent
on the size of the smaller subpopulation. This would decrease our
power to detect differences in compartment sizes in comparisons across
ABC runs.

Note, we make filtering choices to determine what is counted as a
distinct haplotype (see Materials and Methods for full details). In the
main text, we present intermediatefiltering inwhichwe create haplotypes

from alleles observed at least twice before drug resistance sweeps (.70%)
(i.e., alleles that are singletons before fixation are excluded). We can
repeat the analysis for alleles observed in at least one copy (Figure S8)
or at least five copies (Figure S9). Different haplotype thresholds un-
surprisingly alter estimates ofNm, but posteriors are robust for estimates
of s and m, likely due to the factorization procedure (Figures S10 and
S11). Posteriors for all three allele frequency cutoffs are listed in Table S1.

DISCUSSION
In this study, we characterize the dynamics of populations adapting
under strong and uniform population genetic forces - abundant mu-
tation, strong positive selection and fast migration between subpopu-
lations. Specifically, we describe how beneficial mutations can spread
locallywithin populations causing rapid population differentiation. Fast
migration can then re-equilibrate the allele frequencies of the popula-
tions over short timescales. This can happen in two ways: either a
beneficial mutation can sweep in one subpopulation and then establish
in a second subpopulation via migration (migrant-derived sweeps), or
each subpopulation can produce its own beneficial mutation(s) which
ultimately equilibrate in frequency via migration (locally-derived
sweeps).

Although migrant-derived sweeps have been described previously
(Slatkin andWiehe 1998; Kim and Maruki 2011; Bierne 2010), locally-
derived sweeps can help explain the apparent “softening” of hard
sweeps in HIV, which initially show only a single beneficial haplotype,
yet later multiple haplotypes appear (Paulose et al. 2019; Ralph and
Coop 2010; Hermisson and Pennings 2017; Williams and Pennings
2019). If each subpopulation fixes its own beneficial variant, which later
mix, a locally hard sweep can appear to become soft. This is in contrast
to the previously described “hardening” of soft sweeps, which can occur
when demography causes only a single beneficial haplotype of a soft
sweep to fix (Wilson et al. 2017).

That allele frequencies can change dynamically over very short
timescales has important implications for interpreting population dif-
ferentiation statistics. In particular, data sampled at a particular time
point can be misleading in determining population parameters if the
underlying population is incorrectly assumed to be at equilibrium. Even
withconstantmigration rates, samples atdifferent timepoints could lead
one to conclude thatmigration is either prevalent or rare, andmigration
rates much larger than M ¼ 1 can lead to substantial population

Figure 7 Estimation of popula-
tion parameter rates from intra-
patient Simian-HIV data sampled
from different subpopulations.
The top row shows diagrams of
drug resistant haplotypes spread-
ing in different subpopulations
over time sampled at generations
7, 21, 49 and 98 in the gut, lymph
node and blood plasma. Each
color represents a distinct lineage
separated by at least one muta-
tion. The resulting posteriors
are given for the ABC proce-
dure for comparisons between
the plasma and gut (red) and
plasma and lymph node (blue).
tol ¼ 2:5 ·1024. 95% poste-
riors for these distributions are
shown in Table 1.
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differentiation transiently. This suggests that merely observing elevated
FST is not a sufficient condition for diagnosing a low-migration system
and understanding non-equilibrium dynamics of these statistics is im-
portant for analyzing data. Proper accounting for the covariance among
selected alleles can help disentangle the signatures left by combined
selection and migration (Lee and Coop 2017).

To understand the conditions in which populations appear differ-
entiated over short timescales following a selective sweep, we explore an
analytical model of FST between populations with strong migration,
selection and mutation. In time series data, we find a variety of dynam-
ics of elevated FST : if selection is stronger than migration (s � m), FST
will increase over short timescales. If migration is faster than drift
(m � 1=Ne) and the sampling timescale, FST will quickly decrease after
the sweep. When both conditions are met, characteristic non-mono-
tonic patterns of FST emerge over experimentally tractable timescales.
We introduce a modeling framework to further explore this diversity of
patterns.

After observing a diversity of patterns in FST as function of the
relationships between drift, selection and migration, we develop an
iterated-ABC framework that estimates N, s and m jointly using sum-
maries of population differentiation over time. We explore the regimes
where estimation is accurate, and find that its accuracy can be predicted
from our simple analytical model of FST . In the parameter regimes
where estimation is not accurate, we can bound migration rates
above or below certain values by comparing the rate of migration
to the processes of drift and selection. These broad regimes of esti-
mation suggest that we can quantify migration rates that we might
expect to be important among pathogen populations.

While the model-based portion of this analysis focuses mainly on
one metric - FST - to explore patterns of differentiation between
connected populations, the inference framework also exploits other
summarized aspects of the data including counts of shared haplo-
types, and alternative normalizations of heterozygosity. While we
do not here disentangle exactly what each summary statistic con-
tributes, this does suggest that subtle differences in allele frequency
trajectories encode information that can be useful for estimation.
This underscores the potential for machine learning in population
genetic inference Sheehan and Song (2016).

Asanexampleof the inferenceapproach,weestimatemigration rates
between viral populations inhabiting different organs in a Simian-HIV
infectedmacaque treatedwith drugs. Consistent with the findings of the
original study which used several metrics of population differentiation
but did not attempt to estimate rates, we find differential connectivity
between compartments of the body. In particular, we find that mucosal
tissues (i.e., the gut) have lower migration rates into the blood than the
lymph nodes do. However, using our ABC framework, we can make
this description of the intra-patient environment quantitative as op-
posed to simply qualitative. We estimate per-virus migration rates that
can be used in future modeling studies.

One aim of this analysis was to explain a conspicuous pattern
observed during the first �100 generations after the onset of selection

in spatially-sampled simian-HIV populations - a rapid increase in FST
that decays quickly over time. In this paper, we show that some of the
key features of this pattern can be explained in a simple symmetric
island model. Notably, these key features appear without assumptions
of asymmetry among compartments or local adaptation (similar to the
observation that distinct patterns of sweeps across subpopulations can
exist without local adaptation in Bierne (2010)). However, what is
necessary is a migration rate of the right order of magnitude, condi-
tional on the strength of selection.

Note, this doesnot imply that in the caseofSimian-HIVtheobserved
pattern cannot be produced in a different way. For example, selection
strengthordirectionmaydiffer amongcompartmentscausedbyvarying
degrees of penetrance of antiretroviral drugs among organs of the body.
If selection pressures differ between compartments (i.e., a beneficial
mutation in one compartment is neutral or even deleterious in the
other), we are likely to underestimate migration rates, because allele
frequencies will equilibrate more slowly between the two compart-
ments, ultimately reaching migration-selection equilibrium. With
strong and potentially temporally-varying local adaptation, we should
be able to obtain the observed patterns with even much stronger
migration.

However, since complex selection scenarios are not necessary to
produce key features of our observations, we need not assume they are
present. Accordingly, we believe that themechanisms that are described
by our model provide a plausible explanation for the initial dynamics
of population differentiation. This said, there is some circumstan-
tial evidence that over longer time scales selection differences could
play a role. For example, by generation 98, a different clone comes to
dominate the gut compartment than the lymph node and plasma.
Indeed, fitness differences among subsequent selective sweeps (neither
of which are incorporated in the model) can explain this phenomenon.

Other factors, such as asymmetries in mutation rates or compart-
ment sizes could potentially lead to biases in themigration rates relative
to our estimates (although likely to a lesser extent than differences in
selection). Natural extensions to this model might incorporate differ-
ences in natural selection among populations, or include isolation-by-
distance as opposed to a simple island model. An additional problem is
that in non-mutation limited systems, not only do multiple mutations
arise simultaneously, but populations quickly acquire double and triple
mutants. It is therefore important that in future studies,we considerhow
these patterns of population differentiation might appear on a traveling
wave of beneficial mutations, similar to what has been done in single
populations (Desai and Fisher 2007).

Our results also provide guidance for experimental design, partic-
ularly in non-mutation limited systems with strong selection and
potentially high migration rates such as pathogen evolution, and
pesticide and herbicide resistance. In particular, we find that the most
useful way to glean information about migration rates from data are to
include a temporal component to sampling. Formigration estimation, it
is considerably more useful to have three time points of 30 sequences
thana single timepointof 90sequences. It is particularlyuseful to sample

n Table 1 Medians and 95% posteriors for parameter estimation in intra-macaque Simian-HIV populations

m M a s Nm

Plasma v Gut 5.28e-4 15.5 3 0.293
(2.06e-5,0.0326) (0.602,953) (0.987,27.7) (0.122,0.744)

Plasma v Lymph Node 2.71e-2 573 1.24 0.212
(1.09e-3,0.444) (23,9400) (0.783,3.19) (0.11,0.44)

a
M is a composite estimate taken from multiplying the m distribution by the point estimate of predicted population size derived from the estimated Nm

(M ¼ m· ðNmÞ=m).
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duringor shortly after a selective sweep. Fromapractical perspective, the
timing of such sweeps can be determined by phenotypic shifts in the
population. Ifonly a single timepointdirectly after the sweep is available,
this can provide information about whether migration is slower than
selection. However, if an additional later time point is available, this
potentially also gives informationaboutwhethermigration is faster than
drift. Having samples at both of these times provides both upper and
lower bounds for high migration rates.

To understand very rapid processes (such as fast migration) or the
forces governing the population in its current state, it is insufficient to
lookatdynamicsaveragedoutover long timeperiods. Selectionprovides
an avenue to observe the current population state in time that neutral
processes canmiss. Using long termmetrics (like comparing the rate of
migration to the rate of drift) to investigate how much migration is
happening in the moment invites numerous misinterpretations. When
studying migration, as when studying all population processes, the
correct timescale must be carefully considered.
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