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Abstract. Soft selective sweeps represent an important

form of adaptation in which multiple haplotypes bearing

adaptive alleles rise to high frequency. Most statistical

methods for detecting selective sweeps from genetic poly-

morphism data, however, have focused on identifying hard

selective sweeps in which a favored allele appears on a single

haplotypic background; these methods might be underpow-

ered to detect soft sweeps. Among exceptions is the set of

haplotype homozygosity statistics introduced for the detec-

tion of soft sweeps by Garud et al. (2015). These statistics,

examining frequencies of multiple haplotypes in relation to

each other, include H12, a statistic designed to identify both

hard and soft selective sweeps, and H2/H1, a statistic that

conditional on high H12 values seeks to distinguish between

hard and soft sweeps. A challenge in the use of H2/H1 is

that its range depends on the associated value of H12, so

that equal H2/H1 values might provide different levels of

support for a soft sweep model at different values of H12.

Here, we enhance the H12 and H2/H1 haplotype homozy-

gosity statistics for selective sweep detection by deriving the

upper bound on H2/H1 as a function of H12, thereby gener-

ating a statistic that normalizes H2/H1 to lie between 0 and

1. Through a reanalysis of resequencing data from inbred

lines of Drosophila, we show that the enhanced statistic both

strengthens interpretations obtained with the unnormalized

statistic and leads to empirical insights that are less readily

apparent without the normalization.

Introduction

A selective sweep, the process whereby beneficial
mutations at a locus that contribute to the fitness
of an organism rise in frequency to become preva-
lent in a population, can occur through two main
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mechanisms that leave distinct genomic signatures
(Pritchard et al., 2010; Cutter and Payseur,
2013; Messer and Petrov, 2013). A relatively
new adaptive allele can proliferate so that the sin-
gle haplotype on which it has occurred reaches a
high frequency, resulting in a signature of a “hard”
selective sweep (Maynard Smith and Haigh,
1974; Kaplan et al., 1989; Kim and Stephan,
2002). Alternatively, a mutation that arises de
novo multiple times or exists as standing genetic
variation on several haplotype backgrounds before
the onset of positive selection can increase in fre-
quency; in these cases, multiple favored haplotypes
have relatively high frequencies, generating a sig-
nature of a “soft” selective sweep (Hermisson and
Pennings, 2005; Przeworski et al., 2005; Pen-
nings and Hermisson, 2006a). Soft sweeps can
provide an effective mechanism for natural selec-
tion and might explain a sizeable fraction of se-
lective events in many systems (Orr and Betan-
court, 2001; Innan and Kim, 2004; Pritchard
et al., 2010; Messer and Petrov, 2013).

Most statistical methods that have been designed
to detect selective sweeps from patterns of ge-
netic polymorphism search for patterns expected
under a hard-sweep model, such as the presence
of a single common haplotype (Hudson et al.,
1994), high haplotype homozygosity (Depaulis
and Veuille, 1998; Sabeti et al., 2002; Voight
et al., 2006), high-frequency derived variants and
related features of site-frequency spectra (Tajima,
1989; Braverman et al., 1995; Fay and Wu, 2000;
Nielsen et al., 2005), or local loss of variation
near a putative selected site (Maynard Smith and
Haigh, 1974; Begun and Aquadro, 1992; Kim
and Stephan, 2002). Many methods that search
for patterns expected with hard sweeps, however,
can be less well suited to the problem of iden-
tifying soft sweeps (Pennings and Hermisson,
2006b; Teshima et al., 2006; Cutter and Pay-
seur, 2013). Therefore, current genomic scans for
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selective sweeps might be limited in their ability to
uncover an important class of adaptive events.

Recently, it has been shown that statistics based
on haplotype homozygosity can identify both hard
and soft sweeps from population-genomic data
(Ferrer-Admetlla et al., 2014; Garud et al.,
2015). Garud et al. (2015) developed a haplo-
type homozygosity statistic, H12, relying on the
principle that in a soft sweep, the most frequent
haplotype might not predominate in frequency,
and instead, multiple frequent haplotypes might
be present. In terms of frequencies pi ≥ 0 for i =
1, 2, 3, . . . with

∑∞
i=1 pi = 1 and p1 ≥ p2 ≥ p3 ≥ . . .,

Garud et al. (2015) defined H12 as

H12 = (p1 + p2)
2 +

∞∑
i=3

p2i . (1)

This statistic calculates homozygosity by combin-
ing the two largest haplotype frequencies into a
single value and then computing a haplotype ho-
mozygosity. Garud et al. (2015) determined that
H12 has reasonable power to detect both hard and
soft sweeps, applying the statistic to Drosophila
population-genomic data and identifying abundant
signatures of natural selection.

To determine whether the genomic regions with
the highest values of H12 were compatible with ei-
ther a hard-sweep or soft-sweep pattern, Garud
et al. (2015) examined a second statistic, H2/H1, a
ratio of a haplotype homozygosity H2 that excludes
the most frequent haplotype and a haplotype ho-
mozygosity H1 that includes this haplotype:

H1 = p21 + p22 +
∞∑
i=3

p2i (2)

H2 = p22 +
∞∑
i=3

p2i . (3)

For high values of H12, hard sweeps are expected
to produce relatively low values of H2/H1 because
they produce a single high-frequency haplotype
(very high p1, low p2). Soft sweeps, on the other
hand, produce multiple high-frequency haplotypes
(high p1, p2, and perhaps others), and are expected
to produce higher values of H2/H1.
Garud et al. (2015) found that this two-step

process—identification of regions with high H12 fol-
lowed by examination of H2/H1—could both de-
tect selective sweeps in general and distinguish
hard and soft sweeps. As we will show, however,
a complication in the approach is that the per-
missible range of H2/H1 varies with the value of

H12. Thus, the magnitude of H2/H1 that might
be regarded as indicative of a soft or hard sweep
can depend on the associated values of H12. This
potential difference in interpretations for values of
H2/H1 as a function of H12 can present a partic-
ular challenge when comparing H2/H1 at multiple
loci with a wide range of H12 values.

In a line of work separate from the use by Garud
et al. (2015) of homozygosity-based soft sweep
statistics, Rosenberg and Jakobsson (2008) and
Reddy and Rosenberg (2012) analyzed the prop-
erties of homozygosity statistics in relation to the
frequency of the most frequent allele, identifying
upper and lower bounds on homozygosity given the
frequency of the most frequent allele. This work,
along with related work on other statistics (Long
and Kittles, 2003; Hedrick, 2005; Jost, 2008;
VanLiere and Rosenberg, 2008; Maruki et al.,
2012; Jakobsson et al., 2013), seeks to understand
mathematical bounds on population-genetic statis-
tics, so that their application and interpretation
can be suitably informed by the mathematical con-
straints on their numerical values.

Here, to facilitate the interpretation of the statis-
tics of Garud et al. (2015) and to enhance compar-
isons among values of these statistics at loci with
different haplotype homozygosities, we use a result
from Rosenberg and Jakobsson (2008) to deter-
mine the upper and lower bounds on H2/H1 as a
function of H12. The upper bound provides a basis
for normalization of H2/H1 to produce a statistic
with the same range, from 0 to 1, irrespective of
the value of H12. Using the upper bound and the
new normalized statistic, we reexamine Drosophila
data analyzed by Garud et al. (2015), demonstrat-
ing that the upper bound, (H2/H1)max, and the
normalized statistic, (H2/H1)

′, enable improved in-
sights regarding soft selective sweeps on the basis
of genetic polymorphism data.

Theory

Our goal is to determine the maximum of H2/H1

given the value of H12, for 0 < H12 ≤ 1. For con-
venience, we denote Z = H2/H1. We denote the
desired upper bound by Zmax.

For generality in our description, we consider “al-
leles” at a locus. These distinct “alleles” can be
viewed as representing distinct haplotypes at a spe-
cific location in the genome; the assumption is that
a set of distinct genetic types is considered, repre-
senting perhaps distinct haplotypes or distinct al-
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Figure 1: A geometric illustration of the argument for finding the upper bound on H2/H1 as a function of H12.
In both panels, the unit interval (x-axis) is partitioned into components representing allele frequencies. H12 is
represented by the sum of the areas of the red shaded regions, each indicating a squared frequency; the largest
red square indicates (p1 + p2)2 or M2. (A) Step 1: for fixed H12 and fixed M , H2/H1 is maximal when p2 = p1.
The maximal H2/H1 requires p1 to be as small as possible, but p1 ≥ p2 by definition; at the maximal H2/H1, p1
and p2 are equal. (B) Step 2: allowing M to vary while keeping H12 fixed, H2/H1 is maximal when M is as small
as possible. At the maximum for H2/H1, M is reduced to the point where p1 and as many subsequent alleles as
possible have identical frequency, and at most one remaining allele of smaller frequency completes the unit interval.
In both panels, H12=0.23. Part A uses (10 + 3

√
170)/110 ≈ 0.4465 for M and (100 − 3

√
170)/1100 ≈ 0.0553

for each of 10 additional alleles. The dashed lines illustrate the choice of p2 = p1 = M/2. Part B achieves the
maximum of H2/H1 = 221/270 ≈ 0.8185 (eq. 12), with M = 0.35.

leles in the traditional sense, and the sum of the
frequencies of the types is 1.

We sort alleles in descending order of frequency,
so that p1 > 0 and p1 ≥ p2 ≥ p3 ≥ . . . ≥ 0.
The number of alleles is left unspecified, and it can
be arbitrarily large; thus,

∑∞
i=1 pi = 1. For our

mathematical analysis, we consider parametric al-
lele frequencies; that is, the pi are treated as known
frequencies in a population rather than values es-
timated from samples. The mathematical setting
follows Rosenberg and Jakobsson (2008).

We let M = p1 + p2. Because p1 > 0, M , H12,
and H1 are all strictly positive. By analogy with
H1 and H2, denote H3 =

∑∞
i=3 p

2
i . Thus, by eq. 1,

H12 = M2 +H3. (4)

The upper bound on H2/H1 given H12

We proceed in two main steps. First, for fixed H12

and fixed M , we determine the maximum of Z as
a function of p1. Next, we identify the value of M
that maximizes Z. This pair of steps constructs
the set of allele frequencies {pi}∞i=1 that generates
the maximal Z at fixed H12. A graphical overview
of the argument appears in Figure 1.

Maximizing Z for fixed H12 and fixed M .
Because H2 = p22 + H3 and p2 = M − p1, H2 can

be rewritten

H2 = (M − p1)2 +H3. (5)

Note that by eq. 4, for fixed H12 and fixed M , H3

is constant. Because M = p1 + p2, p1 ≥ p2, and
p1 > 0, it follows that M/2 ≤ p1 ≤ M . Treated as
a function of p1, on the interval [M/2,M ], (M −
p1)

2 +H3 is decreasing.
Using eq. 5, Z = H2/H1 can be written

Z =
(M − p1)2 +H3

p21 + (M − p1)2 +H3

=
1

p21/[(M − p1)2 +H3] + 1
. (6)

In eq. 6, for fixed H12 and fixed M , p21 is increasing
in p1 and (M − p1)2 +H3 is decreasing. The ratio
p21/[(M −p1)2 +H3] is therefore increasing in p1, so
that the entire expression for Z decreases with p1.
It is therefore maximized when p1 is minimized—in
other words, when p1 = p2 = M/2. The maximal
Z for fixed H12 and fixed M is

Z =
4H12 − 3M2

4H12 − 2M2
. (7)

It remains to maximize Z by finding the value of
M that maximizes eq. 7 for fixed H12. By rewriting
eq. 7 as Z = 1−M2/(4H12 − 2M2), it can be seen
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that for fixed H12, as M increases, M2 increases,
4H12 − 2M2 decreases, and Z decreases. Thus, for
fixed H12, the maximal Z, treated as a function of
M , occurs when M isas small as possible.

The minimal value of M given H12. We have
shown that maximizing Z for fixed H12 and M re-
quires p1 = p2 = M/2, and hence, using the de-
scending order of the allele frequencies, p3 ≤M/2.
We have also shown that maximizing Z for fixed
H12 over all possible M requires us to find the mini-
mal M permissible for fixed H12. This problem can
be solved with a known result. We first ignore the
trivial case of H12 = 1, for which the maximal Z
has M = 1, p1 = p2 = 1/2, H1 = 1/2, H2 = 1/4,
and Zmax = 1/2.

By eq. 4, minimizing M for fixed H12 amounts
to maximizing H3. Lemma 3 of Rosenberg and
Jakobsson (2008) obtains the maximal sum of
squares for a set of nonnegative numbers in a non-
increasing sequence, each of which lies below the
same specified constant, and whose sum is speci-
fied. In our case, the sequence is {pi}∞i=3, the en-
tries are bounded above by M/2, and their sum is
1− p1 − p2 = 1−M .

Applying the lemma, we obtain

H3 ≤ K(K − 1)

(
M

2

)2

− 2(1−M)(K − 1)
M

2

+(1−M)2, (8)

where K = d(1 −M)/(M/2)e = d2/Me − 2 and
dxe denotes the smallest integer greater than or
equal to x; in the application of the lemma, K gives
the number of nonzero numbers in the sequence
{pi}∞i=3 that achieves the maximum. Equality is
achieved if and only if d2/Me−3 alleles (in addition
to alleles 1 and 2) have frequency M/2, and one
allele has frequency (1−M)−(d2/Me−3)(M/2) =
1− (d2/Me − 1)(M/2).

The minimal M is obtained by substituting the
upper bound from eq. 8 for H3 in eq. 4 and solving
for M . The equation that must be solved is

H12 =
K2 + 3K + 4

4
M2 − (K + 1)M + 1. (9)

Note that K is currently considered a function of
M , equaling d2/Me − 2. However, we can instead
determine the value of K as a function of H12, so
that eq. 9 becomes a simple quadratic equation
in M . To solve eq. 9 for M at a given H12, we
must find the value of K—the number of alleles
of nonzero frequency (not including alleles 1 and
2)—that applies for the given value of H12.

We break the unit interval (0, 1) into disjoint in-
tervals [2/I, 2/(I − 1)) for integers I ≥ 3. On the
interval [2/I, 2/(I−1)) for M , K = I−2. Inserting
K = I − 2 into eq. 9, for M in this interval, the
minimal M in terms of H12 is obtained by solving

H12 =
I2 − I + 2

4
M2 − (I − 1)M + 1 (10)

for M . Thus, identifying the value of K in terms
of H12 for use in eq. 9 amounts to finding the value
of I in terms of H12 for use in eq. 10.

The right-hand side of eq. 10 is monotonically
increasing on the interval [2/I, 2/(I− 1)), as it is a
concave-up parabola in M with minimum at M =
2(I − 1)/(I2 − I + 2) = 2/[I + 2/(I − 1)] < 2/I.
The vertex of the parabola lies to the left of the
left endpoint of the interval, M = 2/I, so that on
[2/I, 2/(I − 1)), the parabola is increasing.

At the left endpoint M = 2/I, H12 = (I +
2)/I2, and at the right endpoint M = 2/(I − 1),
H12 = (I + 1)/(I − 1)2. Consequently, because
H12 increases as a function of M on the inter-
val [2/I, 2/(I − 1)), for this interval, H12 lies in
[(I + 2)/I2, (I + 1)/(I − 1)2).

As a strictly monotonic continuous function from
[2/I, 2/(I−1)) to [(I+2)/I2, (I+1)/(I−1)2), H12 is
invertible as a function of M . Treated as a function
of M in (0, 1), I satisfies 2/I ≤ M < 2/(I − 1);
similarly, as a function of H12 in (0, 1), I satisfies
(I+2)/I2 ≤ H12 < (I+1)/(I−1)2. In other words,
given H12, I must be equal to the smallest integer
for which (I + 2)/I2 ≤ H12.

Solving this inequality, either I ≥
(1 +

√
8H12 + 1)/(2H12) or I ≤ (1 −√

8H12 + 1)/(2H12). The latter root is nega-
tive and can be discarded as I ≥ 3. The smallest
integer that satisfies the former inequality is

I =

⌈
1 +
√

8H12 + 1

2H12

⌉
. (11)

We can now complete the solution for the minimal
M as a function of H12: this minimum is a solution
to eq. 10 when eq. 11 is used for I. The equation
has two roots; the smaller root is smaller than 2/I,
and therefore lies outside the interval [2/I, 2/(I −
1)) in which M must fall when H12 satisfies eq. 11.
The minimal M therefore equals the larger root.

The formula for Zmax. Compiling the steps we
have completed, we have that as a function of H12,

Zmax(H12) =
4H12 − 3M2

4H12 − 2M2
, (12)
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Figure 2: The upper bound on H2/H1 as a function of
H12. The exact upper bound is given by eq. 12, and the
approximate upper bound is given by eq. 15.

where M is the larger root of eq. 10,

M =
2(I − 1) + 2

√
(I2 − I + 2)H12 − (I + 1)

I2 − I + 2
,

(13)
and I satisfies eq. 11. The formula for Zmax holds
for all H12 in (0, 1]; in the H12 = 1 case that we
initially discarded, eq. 12 gives the correct value
Zmax = 1/2. Zmax is reached when I−1 alleles each
have frequency M/2 and one allele has frequency
1− (d2/Me − 1)(M/2).

Figure 2 plots eq. 12 as a function of H12 over
the unit interval. A piecewise structure of the up-
per bound Zmax is visible, reflecting the fact that at
points H12 = (I+2)/I2 for integers I ≥ 3, the value
of I as a function of H12 changes, and Zmax is not
differentiable. Zmax approaches a limiting value of
1 as H12 approaches 0, and it declines monotoni-
cally to a value of 1/2 at H12 = 1.

An approximation to Zmax. It is convenient
to consider a simple approximation to Zmax by ex-
amining the points H12 = (I + 2)/I2 for integers
I ≥ 3. At these points, applying eqs. 11-13,

I =
1 +
√

8H12 + 1

2H12

, (14)

M = 2/I, and Zmax = (I − 1)/I. Eqs. 11-13 sim-
plify because Zmax is achieved when I alleles each
have frequency 1/I, unlike for otherH12 < 1, where
one nonzero frequency differs from the others.

We can approximate Zmax by finding a function

Ymax that satisfies

Ymax

(
I + 2

I2

)
=
I − 1

I

at the points specified by integers I ≥ 3 and using
this function to interpolate across all values of H12.
WhenH12 = (I+2)/I2 for integers I ≥ 3, I satisfies
eq. 14, and

I − 1

I
=

1 +
√

8H12 + 1− 2H12

1 +
√

8H12 + 1
.

Multiplying the numerator and denominator of this
equation by 1−

√
8H12 + 1, we have

Ymax(H12) =
5−
√

8H12 + 1

4
. (15)

This approximate bound agrees with the strict
bound Zmax at points H12 = (I + 2)/I2 for inte-
gers I ≥ 3, and it matches Zmax at the endpoints
of the unit interval. In Figure 2, it can be seen that
Ymax provides a reasonable approximation to Zmax

over the entire interval.
Not only is Ymax an approximation to the strict

upper bound Zmax, Ymax ≥ Zmax for H12 in (0, 1],
so that Ymax is itself an upper bound. To prove this
result, using eqs. 15 and 12, we have

Ymax(H12)− Zmax(H12)

=
(2H12 +M2)− (2H12 −M2)

√
8H12 + 1

4(2H12 −M2)
.

The denominator is positive, as 2H12−M2 = M2+
2H3 > 0. It remains to show that

2H12 +M2 ≥ (2H12 −M2)
√

8H12 + 1.

Squaring both sides, Ymax(H12)− Zmax(H12) ≥ 0 if

−8H12[4H
2
12 − 4M2H12 + (M4 −M2)] ≥ 0.

As H12 is positive, Ymax(H12) − Zmax(H12) ≥ 0 if
H12 lies in the closed interval bounded by the roots
of the quadratic term in brackets, or (M2 −M)/2
and (M2 +M)/2. Because 0 < M ≤ 1, the smaller
root is at most 0, and H12 ≥ (M2 −M)/2 always
holds. It thus suffices to prove H12 ≤ (M2 +M)/2.

Recalling eq. 4, we must show that H3 ≤ (M −
M2)/2. Eq. 8 provides a maximum on H3 in terms
of M ; substituting this maximum for H3, we have
H3 ≤ (M −M2)/2 if

1

4
(KM +M − 2)(KM + 2M − 2) ≤ 0.
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This last inequality is true by definition of K =
d2/Me − 2, as 2/M − 2 ≤ K < 2/M − 1 implies
KM + M − 2 < 0 and KM + 2M − 2 ≥ 0. We
can therefore conclude that H3 ≤ (M − M2)/2,
and hence H12 ≤ (M2 + M)/2, and Ymax(H12) −
Zmax(H12) ≥ 0 for H12 in (0, 1].

The lower bound on H2/H1 given H12

It is straightforward to show that for any H12 in
(0, 1], H2/H1 can get arbitrarily close to 0. For
H12 = 1, we set p1 = 1 − ε and p2 = ε for a small
ε > 0. Then H2/H1 = ε2/[(1 − ε)2 + ε2], which
approaches 0 as ε → 0. Otherwise, we construct a
scenario with one frequent allele and K rare alleles,
and demonstrate that H2/H1 → 0 as K →∞.

Suppose p1 =
√
KH12 − 1/

√
K − 1 and p2 =

p3 = . . . = pK+1 = (1 −
√
KH12 − 1/

√
K − 1)/K

for large K. Frequency p1 is large and the remain-
ing frequencies are small. In this case,

H2

H1

=
Kp22

p21 +Kp22

=

(
1−

√
KH12−1√
K−1

)2
/K

KH12−1
K−1 +

(
1−

√
KH12−1√
K−1

)2
/K

=
(
√
K − 1−

√
KH12 − 1)2

K(KH12 − 1) + (
√
K − 1−

√
KH12 − 1)2

.

The denominator has higher degree in K than the
numerator, so that limK→∞(H2/H1) = 0.

The mean range of H2/H1 given H12

Determining the mean of the range of Z, treated as
a function of H12 over the unit interval, can provide
a sense of the magnitude of the constraint placed
by H12 on Z. For a statistic with a larger mean
range, a greater proportion of the unit interval can
be achieved, and the statistic is less constrained
than is one with a smaller mean range.

Because Ymax(H12) ≥ Zmax(H12), the simpler
Ymax can assist in evaluating the mean size of the
range of Z. As the minimum Z approaches 0 for all
H12 in (0, 1], the size of the range for Z is simply
Zmax. On the unit interval, Ymax has mean∫ 1

0

Ymax(H12) dH12 =
17

24
≈ 0.708, (16)

and therefore, the mean Zmax is smaller than 17/24.
This mean exceeds 1/2, as the minimal Zmax for

H12 in (0, 1], at H12 = 1, is 1/2. Numerical inte-
gration of eq. 12 to obtain the mean Zmax gives

∞∑
I=3

∫ (I+1)/(I−1)2

(I+2)/I2

Zmax(H12) dH12 ≈ 0.684. (17)

This result illustrates that the mean across the
unit interval for H12 of the error in the approx-
imation of Zmax by Ymax is small, approximately
0.708−0.684 = 0.024. Further, although the range
of Z is constrained, the mean range over all val-
ues of H12 in (0, 1] is larger than corresponding
mean constraints in other contexts involving ho-
mozygosity, Fst, the r2 statistic for linkage dise-
quilibrium, and the frequency of the most frequent
allele (Rosenberg et al., 2003; Rosenberg and
Jakobsson, 2008; VanLiere and Rosenberg,
2008; Reddy and Rosenberg, 2012; Jakobsson
et al., 2013; Edge and Rosenberg, 2014).

Normalized statistics

Because H2/H1 can approach 0 for any H12, a nor-
malization of H2/H1 to lie in [0, 1] need only be
concerned with the upper bound on H2/H1. We
can therefore define exact and approximate nor-
malizations of Z at given values of H12 as follows:

Z ′ =
Z

Zmax(H12)
(18)

Z ′′ =
Z

Ymax(H12)
, (19)

The denominators of these equations are computed
using eqs. 12 and 15, respectively.

Application to data

We illustrate the bounds on H2/H1 as functions of
H12 by reexamining two Drosophila melanogaster
data sets studied by Garud et al. (2015), each
containing fully sequenced genomes of inbred lines
generated from samples taken in North Carolina.
First, we consider the Drosophila Genetic Ref-
erence Panel (DGRP) data set consisting of se-
quences of 145 inbred lines (Mackay et al., 2012).
Next, we examine the Drosophila Population Ge-
nomic Panel (DPGP) consisting of 40 strains. We
consider these two data sets generated with differ-
ent samples both to show an example use of the
upper bounds and to demonstrate how inferences
from samples with differing numerical patterns in
H12 and H2/H1 can be viewed as comparable.
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DGRP data

We first consider the DGRP data set studied by
Garud et al. (2015). As a consequence of in-
breeding, the DGRP genomes are largely homozy-
gous. On each of the four autosomal arms, Garud
et al. (2015) examined haplotypes within anal-
ysis windows of 400 single-nucleotide polymor-
phisms (SNPs, ∼10kb). Because low recombina-
tion rates can result in high haplotype homozygosi-
ties, Garud et al. (2015) excluded analysis win-
dows overlapping 100 kb tracts measured by Com-
eron et al. (2012) to have recombination rates
lower than 5 × 10−7 centimorgans per base pair
(cM/bp). To classify haplotypes within windows,
Garud et al. (2015) assigned the 400-SNP hap-
lotypes into groups according to exact sequence
identity. If a haplotype with missing data matched
multiple haplotypes at all genotyped sites in the
analysis window, then the haplotype was randomly
assigned to one of these classes. In the DGRP data
set, all heterozygous sites in a strain were treated as
missing data. Examining all 4,013,703 segregating
sites across the 145 strains, 0.7% heterozygous sites
per base pair per strain and 4.2% missing data per
base pair per strain were observed. If a haplotype
could not be conclusively assigned based on the in-
formation at non-missing data sites, then the hap-
lotype was randomly assigned to a haplotype class
that matched at all other sites; across all analysis
windows and strains, 18% of assignments to hap-
lotype classes used this method of random assign-
ment. Windows were incremented by 50 SNPs, so
that consecutive windows overlapped by 350 SNPs.

Each window has a haplotype frequency distri-
bution across the 145 lines, enabling computations
of H12, H1, and H2. To avoid inflating the num-
ber of selective events inferred in a genomic region,
Garud et al. (2015) grouped together consecutive
windows as belonging to the same “peak” if the H12

values in all of the grouped windows were above a
critical H12 value calculated under a neutral de-
mographic model. They assigned H12 and H2/H1

values to individual peaks by using the values cal-
culated in the analysis window with the largest H12

within a peak. Garud et al. (2015) focused on
the 50 peaks with the largest H12 values, none of
which possessed two or more windows sharing the
same highest H12 value. The top three peaks co-
incided with the loci Ace, Cyp6g1, and CHKov1,
prominent cases of adaptation previously discov-
ered by detailed focused analyses (Daborn et al.,
2001; Catania et al., 2004; Menozzi et al., 2004;

Aminetzach et al., 2005; Karasov et al., 2010;
Schmidt et al., 2010; Magwire et al., 2011).

Effect of normalization in the DGRP data

We assessed the effect of the application of Z ′ to
H12 and H2/H1 values calculated for the top 50
peaks in the DGRP data set. To do so across the
full range of possible values for (H12, H2/H1), we
first calculated the change δ = Z ′ − Z in H2/H1

produced by the normalization. For any value of
H12, as H2/H1 increases, δ also increases, reflecting
the monotonicity of the upper bound on H2/H1

with increasing H12 (Figure 3A). The maximal δ of
1/2 is achieved when H12 = 1 and H2/H1 = 1/2.

Overlaid in Figure 3A are the H12 and H2/H1

values from the 50 top peaks in the DGRP data
set. The values of H12 generally lie below 0.25,
with most values occurring near 0.1. The values of
H2/H1 span a wide range, with most (H12, H2/H1)
combinations lying in a region of the space where
δ is between 0.025 and 0.05.

DPGP data

Our second example considers the DPGP data set
that was also studied by Garud et al. (2015). The
DPGP data set (Mackay et al., 2012) consists of
40 of the original 145 inbred lines in the DGRP
data set, sequenced and assembled separately from
the DGRP data (www.dpgp.org).

In the DPGP data set, considering all 2,337,358
segregating sites across the 40 lines, there were
1.2% heterozygous sites per base pair per strain,
and the missing data rate was 7.5%. With this re-
duced sample size compared to the DGRP data—
and hence, with both shorter distances over which
haplotypes become unique and faster computation
times—Garud et al. (2015) measured H12 val-
ues in shorter overlapping analysis windows of 100
SNPs incremented by 1 SNP. The treatment of hap-
lotypes and missing data proceeded in the same
manner as in the DGRP analysis. In this scan, av-
eraging across lines, haplotypes with missing data
were clustered with other haplotypes matching at
all other positions at a lower rate of 2.7%.

As in the DGRP analysis, Garud et al. (2015)
identified the 50 peaks with the highest H12. This
analysis produced a distinct but overlapping set
of high-H12 windows as the DGRP top 50 peaks,
again recovering known cases of adaptation at Ace,
Cyp6g1, and CHKov1.
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Figure 3: The effect of the application of Z ′ on H2/H1 values in data from Drosophila. The shaded regions show
the change δ in H2/H1 values after applying the normalization, where δ = Z ′−Z. Overlaid are points representing
the top 50 windows for H12 in Drosophila melanogaster genome scans. (A) Drosophila Genetic Reference Panel
(DGRP) data. (B) Drosophila Population Genomic Panel (DPGP) data. The solid line shows the exact upper
bound on H2/H1 (eq. 12), and the dashed line shows the approximate upper bound (eq. 15).

Effect of normalization in the DPGP data

As in our analysis of the DPGP data, we assessed
the effect of the application of Z ′ to high-H12

peaks in the DPGP data set. Figure 3B plots the
(H2/H1, H12) values for the top 50 peaks in the
DPGP data. In comparison to those seen in the
DGRP data set, the H12 values in the DPGP data
are generally greater, and the H2/H1 values lower.
As a consequence, the points in the DPGP data lie
in a region of the space in which normalization has
a greater effect, often with δ > 0.05.

Comparison of DGRP and DPGP

Garud et al. (2015) compared the positions of the
top 50 peaks in the DPGP data set according to
H12 with the positions of the top 50 peaks in the
DGRP data set to determine if the same selective
events were identified in the two data sets. To do
so, Garud et al. (2015) overlapped the edge co-
ordinates of the peaks in the two data sets, where
the edge coordinates of each peak correspond to
the positions of the first SNP of the first analy-
sis window and the last SNP of the last analysis
window within a peak. An overlap was defined
as a non-empty intersection of the two genomic re-
gions defining the boundaries of the two peaks, one
from one data set and one from the other. Garud
et al. (2015) found that 16 DPGP peaks overlapped
13 DGRP peaks, 10 of which were among the top
15 peaks in the DGRP scan. In three cases, two
DPGP peaks overlapped one DGRP peak because
multiple non-overlapping peaks in the DPGP data

were in the same region as a DGRP peak. These
multiple proximate peaks in the DPGP data set
might have been part of the same selective events.

Jointly considering the DGRP and DPGP data
sets, different sample depths and analysis window
sizes can result in different distributions of H12

and H2/H1 values, and thus, in different inferences
about selection. As a consequence, although sev-
eral H12 peaks overlap in the DGRP and DPGP
scans, the H12 and H2/H1 values for the top peaks
differ between the two data sets. This result com-
plicates the comparison of the selection signals ob-
tained between the two data sets. Application of
our normalization, however, can facilitate a mean-
ingful comparison of the H12 and H2/H1 values
measured in different data sets that potentially un-
cover the same selective events.

We applied the Z ′ and Z ′′ normalizations to over-
lapping peaks in the two data sets. Figure 4A
shows that prior to normalization, the H2/H1 val-
ues for DGRP exceed those of DPGP, as was seen
previously in the plots of all 50 windows in Fig-
ure 3. However, after normalization, the distribu-
tions of H2/H1 values for the two scans are com-
parable despite the differences in H12. We quanti-
fied this change with a paired two-tailed Wilcoxon
signed-rank test, testing the null hypothesis that
the distributions ofH2/H1 values in the DGRP and
DPGP data are the same before and after applica-
tion of Z ′ and Z ′′. Because 16 peaks in the DPGP
data set overlap 13 peaks in the DGRP set, where
three pairs of DPGP peaks each overlap unique
peaks in the DGRP data, we removed one of the
overlapping peaks from each pair in order to per-
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Figure 4: H12 and H2/H1 values calculated in overlapping peaks in the DGRP and DPGP data sets before
normalization and after the application of Z ′ and Z ′′. Corresponding points for the DGRP and DPGP data sets
are connected by lines. Note that because the 16 DPGP peaks overlap 13 DGRP peaks, three DGRP points are
each connected to a pair of DPGP points. Also, two pairs of DPGP points with different chromosomal locations
have the same (H12, H2/H1) coordinates. (A) Unnormalized H2/H1 values. Overlaid are the exact upper bound
(solid) and the approximate upper bound (dashed) as given by eq. 12 and eq. 15. (B) Values of Z ′ (eq. 18). (C)
Values of Z ′′ (eq. 19).

form a paired test. We applied this procedure eight
times to account for every possible combination of
discarded peaks, finding that in all cases, before
application of Z ′ or Z ′′, H2/H1 was greater in the
DGRP data than in the DPGP data (P = 0.0473,
averaged across the eight choices). After appli-
cation of Z ′ and Z ′′, however, the comparison of
DGRP and DPGP did not produce a significant
difference (P = 0.1946 and P = 0.1781 for Z ′ and
Z ′′, respectively, averaged across the eight choices).
Thus, because normalization reduces the difference
in H2/H1 values between corresponding peaks in
the DGRP and DPGP data, the normalization sug-
gests that differences in H2/H1 for corresponding
peaks are attributable largely to the different val-
ues of H12 in the two data sets rather than to gen-
uine differences in the biological signals that the
two data sets provide.

Note that normalization can in principle change
the rank order of peaks for a given data set, as
a lower H2/H1 at a higher H12 can be shifted af-
ter normalization above a higher H2/H1 at a lower
H12. In our examples with the DGRP and DPGP
data sets, however, relatively few reorderings of
peaks took place upon normalization. We calcu-
lated a Spearman rank correlation coefficient to
quantify the difference in rank order of Z and Z ′

values and Z and Z ′′ values for the overlapping
peaks in the DGRP and DPGP data sets, and in
all four calculations (DGRP Z to Z ′, DGRP Z to
Z ′′, DPGP Z to Z ′, DPGP Z to Z ′′), the correla-
tion coefficient exceeded 0.999.

Discussion

Statistical methods for detecting selective sweeps
from genomic data have enabled the identification
of cases of adaptation in multiple organisms. Many
statistics have been developed to identify hard se-
lective sweeps, and recent attention has now also
focused on detecting soft sweeps (Messer and Ne-
her, 2012; Peter et al., 2012; Fu and Akey, 2013;
Messer and Petrov, 2013; Vitti et al., 2013;
Ferrer-Admetlla et al., 2014; Jensen, 2014;
Wilson et al., 2014). Garud et al. (2015) re-
cently proposed the haplotype homozygosity statis-
tics H12 and H2/H1 to discover both hard and soft
selective sweeps and to differentiate whether top
candidates for selection have signatures of hard or
of soft sweeps. They applied their method to two
Drosophila population-genomic data sets, DGRP
and DPGP, recovering known cases of adaptation
as well as finding new candidates.

In this paper, we have shown that the permis-
sible range of H2/H1 values is dependent on their
associated H12 values, and that therefore, the inter-
pretation of H2/H1 in distinguishing hard and soft
sweeps can be challenging when comparing H2/H1

values across loci with a broad distribution of H12

values. To facilitate interpretation of H2/H1 values
measured in scans with a wide range of H12 val-
ues, we developed approximate and exact normal-
izations Z ′ and Z ′′ that can be applied to H2/H1.
The application of the statistics Z ′ and Z ′′ to data
has the greatest impact for H2/H1 values with high
associated H12 values (>0.5).
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We illustrated the use of the new bounds
and normalizations using data from Drosophila.
Garud et al. (2015) compared the H12 peaks in the
DGRP and DPGP data sets, finding that 13 DGRP
peaks overlapped 16 DPGP peaks. However, the
overlapping H12 peaks in the two data sets had sig-
nificantly different H2/H1 values despite presum-
ably reflecting the same selective events. In ap-
plying Z ′ and Z ′′ to the H2/H1 values observed
at the highest, overlapping H12 peaks in the two
data sets, we found that the comparison of distri-
butions of H2/H1 values observed in the two scans
did not produce a significant difference after nor-
malization. Thus, the differences in distributions
of H12 and H2/H1 across data sets might be at-
tributable to differences in sample sizes and analy-
sis window sizes in the two scans rather than to dif-
ferences in biological signal. Indeed, the two data
sets differed in a number of ways that could have
generated higher H12 values on average for DPGP
compared to DGRP. DPGP had a smaller sample
size; in evaluating H12 from a finite sample of size
n ≥ 2, eq. 1 has a minimum of (n + 2)/n2, which
is greater for smaller n. H12 was also applied to
DPGP in smaller analysis windows; decreasing the
window size increases the probability of haplotype
identity, thus increasing measures of homozygosity.

Our work on the relationship between H12 and
H2/H1 parallels other studies (Long and Kit-
tles, 2003; Rosenberg et al., 2003; Hedrick,
2005; Rosenberg and Jakobsson, 2008; Van-
Liere and Rosenberg, 2008; Maruki et al.,
2012; Reddy and Rosenberg, 2012; Jakobsson
et al., 2013; Edge and Rosenberg, 2014) in ob-
taining bounds on population-genetic statistics. A
shared feature common to these studies is that in
each study, unexpected or counterintuitive bounds
are identified that are informative for sensible in-
terpretation. As in some of these studies, however,
our calculations consider an unspecified number of
haplotypes K. If we instead required that K be
specified as a finite constant, it would not be possi-
ble to reach the lower bound of 0 on H2/H1 because
the lower bound is obtained from a limiting sce-
nario with large numbers of low-frequency alleles.
The difference in bounds between arbitrary-K and
finite-K cases can for some statistics be nontrivial,
especially for small K (Reddy and Rosenberg,
2012); for future work, it will be of interest to de-
termine the magnitude of the effect on the H2/H1

bounds of fixing the value of K.
The proposed normalizations, Z ′ and Z ′′, offer

an improvement in the interpretation of the H12

and H2/H1 statistics proposed by Garud et al.
(2015). Further simulation-based investigation of
the influence on H12 and H2/H1 of such variables
as haplotype window sizes and sample sizes will
be important for continuing to clarify the behav-
ior of the statistics in models of selective sweeps.
Nevertheless, as shown in our Drosophila example,
the normalization of H2/H1 in data sets of varying
sample sizes and SNP densities can help with the
interpretation of selection scans, especially as data
for testing population-genomic hypotheses become
increasingly available in a variety of organisms.
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